%0 Journal Article %T Muscular Damage and Kidney Function in Rugby Players after Daily Whole Body Cryostimulation %A Giovanni Lombardi %A Alessandra Colombini %A Simone Porcelli %A Clara Mauri %A Viviana Zani %A Felice Bonomi %A Gianluca Melegati %A Giuseppe Banfi %J Physiology Journal %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/790540 %X Muscular damage, consequent to strenuous activities, could exceed the recovery potential of muscles and determine renal failure. Whole body cryostimulation is a cold-based therapy used to improve recovery or overcome fatigue symptoms. This study aimed to evaluate the effects of repeated sessions of cryostimulation on muscle damage, renal function, and their relationship. Serum samples, from 27 elite rugby players, under training, before and after 2 sessions/day of cryotherapy over 7 days, were tested for markers of muscular (creatine kinase, lactate dehydrogenase, and aspartate aminotransferase) and renal (creatinine, cystatin C) functions. eGFR was calculated with two formulas based on either serum creatinine concentration (MDRD) or serum creatinine and cystatin C concentrations (creatinine/cystatin C CKD EPI). Pre- and posttreatment differences were determined by Wilcoxon¡¯s test; correlations were evaluated with Spearman¡¯s test. Cryostimulation helped muscular recovery (increased lactate dehydrogenase activity and the stabile creatine kinase and aspartate aminotransferase activities). Creatinine was unaffected while cystatin C was increased . Creatinine-based eGFR was not affected by cryostimulation, while creatinine/cystatin C-based eGFR showed a slight decrease . eGFR and muscular biomarkers were not correlated, suggesting a real recovery effect of cryotherapy. Cystatin C seemed more sensible than creatinine in evaluating the kidney function. 1. Introduction Exercise rises muscle metabolic parameters (creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST)) and, thus, their interpretation could be helpful in monitoring recovery from normal training, overtraining, or, even, from muscular trauma [1]. If the exercise intensity is strenuous, the muscle can be damaged and this is evidenced by increasing soreness, weakness, and tenderness along with strength loss. The muscular damage is molecularly marked by increased blood levels of CK, LDH, and myoglobin [2]. Myoproteins are released from muscle cells due to the increased leakage from membrane as a consequence of the contractile activity. One of the main causes of increased membrane permeability or susceptibility to breaking is the action of exercise-generated free radicals [3]. Serum activity of CK is one of the most studied markers for monitoring muscular status and recovery in sports medicine. Its increase depends on sport discipline and performance length. Moreover, athletes show higher, even doubled, basal values of CK than their sedentary counterparts, as reported, %U http://www.hindawi.com/journals/physiology/2014/790540/