%0 Journal Article %T Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs %A Rodney R. Dietert %J Journal of Biomedical Education %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/239348 %X Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM) curriculum has usually focused on the students (1) acquiring increased disciplinary expertise, (2) learning needed methodologies and protocols, and (3) expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices. 1. Introduction Recently in developing a university course to prepare students for a lifelong career in research, an opportunity arose to consider the conflicting duality that exists in science, technology, engineering, and mathematics (STEM) based preparation of a well-educated, fully-prepared research scientist. This conflicting duality is discussed by R. R. Dietert and J. Dietert [1]. For example, if one were to characterize well-trained scientists and health research professionals, the descriptive phrases would likely include focused experts in a significant disciplinary area (subspecialty), rigorously steeped in the scientific method, engaged in critical thinking and doggedly pursuing hypotheses, embarked on an incremental path to gain scientific/medical recognition and credibility, and synched with current funding/medical support. But there are other phrases that are equally useful in describing researchers who have achieved the most significant breakthroughs in scientific %U http://www.hindawi.com/journals/jbe/2014/239348/