%0 Journal Article %T Siting and Sizing of DG in Medium Primary Radial Distribution System with Enhanced Voltage Stability %A Sanjay Jain %A Ganga Agnihotri %A Shilpa Kalambe %A Renuka Kamdar %J Chinese Journal of Engineering %D 2014 %R 10.1155/2014/518970 %X This paper intends to enumerate the impact of distributed generation (DG) on distribution system in terms of active as well as reactive power loss reduction and improved voltage stability. The novelty of the method proposed in this paper is the simple and effective way of sizing and siting of DG in a distribution system by using two-port Z-bus parameters. The validity of the method is verified by comparing the results with already published methods. Comparative study presented has shown that the proposed method leads existing methods in terms of its simplicity, undemanding calculation procedures, and less computational efforts and so does the time. The method is implemented on IEEE 69-bus test radial distribution system and results show significant reduction in distribution power losses with improved voltage profile of the system. Simulation is carried out in MATLAB environment for execution of the proposed algorithm. 1. Introduction With the development of economy, load demands in distribution networks are sharply increasing. Hence, the distribution networks are operating more close to the voltage instability boundaries. The decline of voltage stability margin is one of the important factors which restrict the increase in load served by distribution companies [1]. Therefore, it is necessary to consider voltage stability with the integration of DG units in distribution systems. The insertion of DG presents opportunities as it leads many technical as well as economical benefits along with voltage stability attained due to reduction of line currents. Reduction of line currents also results in the line loss reduction. Planning issues, regulatory framework, and the availability of resources limit distribution network operators (DNOs) and developers in their ability to accommodate distributed generation but governments are incentivizing low carbon technologies, as a means of meeting environmental targets and increasing energy security. This momentum can be harnessed by DNOs to bring network operational benefits through improved voltage profile and lower line losses delivered by investment in DGs [2]. The main hurdles for the DNOs are the implementation and reliability of the loss minimization technique; however researchers are trying hard to locate better techniques to exploit all possible benefits of DG [2]. This paper mainly focuses on the investigation of simple and efficient analytical approach for siting and sizing of DG for insertion in distribution system and evaluation of its performance in terms of system loss reduction and voltage profile %U http://www.hindawi.com/journals/cje/2014/518970/