%0 Journal Article %T Friction Performance of Al-10%SiCp Reinforced Metal Matrix Composites Using Taguchi Method %A Shouvik Ghosh %A Prasanta Sahoo %A Goutam Sutradhar %J ISRN Tribology %D 2013 %R 10.5402/2013/386861 %X The present paper considers the friction performance of Al-10%SiCp reinforced metal matrix composites against steel for varying tribological test parameters. The composite is prepared by stir-casting process using aluminium alloy LM6 being mixed with 10% silicon carbide by weight. The tribological tests are performed by varying applied load, sliding speed, and time. The friction performance is studied using plate-on-roller configuration in a multitribotester and optimized using Taguchi L27 orthogonal array. Analysis of variance (ANOVA) is performed to observe the significance of test parameters and their interactions on friction performance. It is observed that normal load and the interaction between normal load and speed influence the friction behaviour, significantly. The wear tracks are analyzed with the help of scanning electron microscopy. 1. Introduction Particle reinforced composites are recognized as a light weight material having enhanced mechanical and tribological properties than the constituent materials. The MMC (metal matrix composite) materials attain the toughness of the alloy matrix and hardness, stiffness, and strength of the reinforcement. Researchers [1¨C3] have used different types of aluminium alloys for synthesis of the composites. Also, different types of silicon carbide reinforcement such as particle, whisker, and fibre reinforcement are used by researchers. Mainly reinforcement volume fraction is varied by most researchers. Ahlatci et al. [4] carried out tribological experiments by mixing reinforcement in the volume fraction range from 0 to 60%. But most researchers [5¨C7] used volume fraction ranging from 1 to 20% for their study. The composites, synthesised by mixing the base metal and reinforcement, have greater strength, improved stiffness, improved corrosion resistance, and improved wear resistance. However, the relatively poor seizure resistance of aluminium alloy has restricted to uses in some engineering applications. These materials are good alternative to the traditional materials due to the improved properties. The increasing use of composite materials in the automobile and aeronautics fields is due to good friction and wear properties. In aeronautics, it is used for manufacturing of rotor blades due to increased creep resistance. The aluminium composites exhibit lower friction coefficient than their base alloys [8, 9]. Iwai et al. [6] conducted the study with 2024 Al alloy reinforced with 10% vol SiC. The friction study showed that initially the friction coefficient value is around 0.6 for both 2024£¿Al alloy and %U http://www.hindawi.com/journals/isrn.tribology/2013/386861/