%0 Journal Article %T Friction Performance Optimization of Chemically Deposited Ni-P-W Coating Using Taguchi Method %A Supriyo Roy %A Prasanta Sahoo %J ISRN Tribology %D 2013 %R 10.5402/2013/136740 %X The present study considers the friction behavior of chemically deposited Ni-P-W coatings and optimization of the coating process parameters for minimum friction using Taguchi method. The study is carried out by varying the combination of four coating process parameters, namely, concentration of nickel source, concentration of reducing agent, concentration of tungsten source, and annealing temperature. The friction tests are conducted in a plate-on-roller configuration by keeping the coated sample fixed against a rotating steel roller. The optimum combination of process parameters for minimum friction coefficient is obtained from the analysis of S/N ratio. Furthermore, a statistical analysis of variance reveals that the concentration of nickel source solution has the most significant influence in controlling friction characteristics of Ni-P-W coating. The surface morphology and composition of coatings are also studied with the help of scanning electron microscopy, energy dispersed x-ray analysis, and x-ray diffraction analysis. 1. Introduction Coating process is the most efficient technique to improve the performance capabilities of metal surfaces, by allowing the mechanical properties of the substrate material to be maintained while protecting them against wear, friction, or corrosion by a protective coating. The electroless plating/chemical deposition was first adopted by Brenner and Riddell [1, 2]. It is a method of plating metallic substrates with nickel or cobalt alloys without the application of any external current source. In general, this type of plating is characterized by the selective reduction of metal ions only at the surface of a catalytic substrate immersed into an aqueous solution of metal ions, with continued deposition on the substrate through the catalytic action of the deposit itself. Since the deposit catalyzes the reduction reaction, the term autocatalytic is also used to describe the plating process. In this process the substrate develops a potential when it is dipped in electroless solution called bath that contains a source of metallic ions, reducing agent, complexing agent, stabilizer, and other components [3]. Due to the developed potential both positive and negative ions are attracted towards the substrate surface and release their energy through charge transfer process, and this property gives it an extra advantage over the conventional electroplating processes that depend on an external source of direct current in order to reduce nickel ions in the electrolyte to nickel metal on the substrate. Another advantage is that %U http://www.hindawi.com/journals/isrn.tribology/2013/136740/