%0 Journal Article %T MQoSR: A Multiobjective QoS Routing Protocol for Wireless Sensor Networks %A Hind Alwan %A Anjali Agarwal %J ISRN Sensor Networks %D 2013 %R 10.1155/2013/495803 %X With the growing demand for quality-of-service (QoS) aware routing protocol in wireless networks, QoS-based routing has emerged as an interesting research topic. Quality of service guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. In this paper, we present a heuristic neighbor selection mechanism in WSNs that uses the geographic routing mechanism combined with the QoS requirements to provide multiobjective QoS routing (MQoSR) for different application requirements. The problem of providing QoS routing is formulated as link, and path-based metrics. The link-based metrics are partitioned in terms of reliability, delay, distance to sink, and energy, and the path-based metrics are presented in terms of end-to-end delay, reliability of data transmission, and network lifetime. The simulation results demonstrate that MQoSR protocol is able to achieve the delay requirements, and due to optimum path selection process, the achieved data delivery ratio is always above the required one. MQoSR protocol outperforms the existing model in the literature remarkably in terms of reliable data transmission, time data delivery, and routing overhead and underlines the importance of energy-efficient solution to enhance network lifetime. 1. Introduction The open nature of wireless sensor networks (WSNs) recently attracted significant research attention [1]. The wide range of WSNs applications [2] in both civil and military domains and the fast growth of wireless networks indicate that the future network design will need to support various applications with different quality-of-service (QoS) requirements [3]. In QoS-based routing protocols, the network has to balance its traffic while improving the network performance. Researchers have proposed many metrics for QoS routing as a set of constraints which can be specified as a wireless link constraint or a path constraint. Link constraints specify the restriction on the use of links such as delay, while a path constraint specifies the end-to-end QoS requirement such as the data transmission reliability constraint. Thus, routing algorithms are required to find specific routes for each application requirements, frequently given in terms of objectives. In many applications, to extend the network lifetime is considered more important than the quality of data, and this is related to the reduction of the energy dissipation in the sensor %U http://www.hindawi.com/journals/isrn.sensor.networks/2013/495803/