%0 Journal Article %T Balancing Energy Consumption in Clustered Wireless Sensor Networks %A Tony Ducrocq %A Micha£żl Hauspie %A Nathalie Mitton %J ISRN Sensor Networks %D 2013 %R 10.1155/2013/314732 %X Clustering in wireless sensor networks is an efficient way to structure and organize the network. It aims at identifying a subset of nodes within the network and binding it to a leader (i.e., cluster head). The leader becomes in charge of specific additional tasks like gathering data from all nodes in its cluster and sending them using a longer range communication to a sink. As a consequence, a cluster head exhausts its battery more quickly than regular nodes. In this paper, we present four variants of BLAC, a novel battery level aware clustering family of schemes. BLAC considers the battery level combined with another metric to elect the cluster-head. The cluster-head role is taken alternately by each node to balance energy consumption. Due to the local nature of the algorithms, keeping the network stable is easier. BLAC aims at maximizing the time with all nodes alive to satisfy the application requirements. Simulation results show that BLAC improves the full network lifetime three times more than the traditional clustering schemes by balancing energy consumption over nodes and still deliveres high data ratio. 1. Introduction Multihop wireless sensor networks (MWNs) consist of sets of mobile wireless nodes without support of any preexisting fixed infrastructure. Such large scale wireless sensor networks offer great application perspectives. Wireless sensors are often tiny devices with hardware constraints (low memory storage, low computational resources) that rely on battery. Sensor networks thus require energy-efficient algorithms to make them work properly in a way that suits their hardware features and application requirements. In this paper, we focus on a given application defined by the ANR BinThatThinks (http://binthatthink.inria.fr) project. The project aims to ease the collect and recycling of waste and reduce its cost through the use of wireless sensors placed on dustbins. Dustbins are also equipped with GPRS chips for long range communications. In this paper, our goal is to propose a novel clustering algorithm for wireless sensor networks in which each sensor node sends its data to its cluster head (potentially through Multihop paths) based on the context of the BinThatThinks project. In this context, cluster heads collect data from all sensors in their cluster and send them through their GPRS link. Since activating the GPRS consumes more energy than peer-to-peer communications (as shown in Table 1, Section 6), each node should take the cluster head role in turn in order to allow the network to be operational as long as possible without too %U http://www.hindawi.com/journals/isrn.sensor.networks/2013/314732/