%0 Journal Article %T A Comparative Analysis of Reliable and Congestion-Aware Transport Layer Protocols for Wireless Sensor Networks %A Bhisham Sharma %A Trilok C. Aseri %J ISRN Sensor Networks %D 2012 %R 10.5402/2012/104057 %X Design and implementation of wireless sensor Networks have gathered increased attention in recent years due to vast potential of sensor networks consisting of spatially distributed devices (motes) to cooperatively monitor physical or environmental conditions at different locations. Wireless sensor networks are built upon low cost nodes with limited battery (power), CPU clock (processing capacity), and memory modules (storage). Transport layer protocols applied to wireless sensor networks can handle the communications between the sink node and sensor nodes in upstream (sensor-to-sink) or downstream (sink-to-sensor) direction. In this paper, we present a comparative analysis of reliable and congestion aware transport layer protocols for wireless sensor networks and number of open issues that have to be carefully realized to make use of the wireless sensor networks more efficiently and to enhance their performance. We first list the characteristics of transport layer protocols. We then provide a summary of reliable and congestion aware transport layer protocols with their respective pros and cons and comparison of different protocols based on reliability, congestion control, and energy efficiency. Finally, we point out open research issues of transport layer protocols for wireless sensor networks, which need further attention to overcome the earlier mentioned challenges. 1. Introduction Wireless sensor networks (WSN) are formed by collection of hundreds or thousands of sensor nodes and are used to monitor events in a region. Sensor nodes are composed of processor, memory, transceiver, one or more sensors, and a battery [1]. The data collected from the region are sent to the Access Point (AP) that connects the sensor network with one or more observers. The observer is end user wishing to receive information from the observed area [2]. Our major focus in this paper is on the comparison of transport layer protocols for wireless sensor networks. Transport protocols are used to decrease congestion and reduce packet loss, to provide fairness in bandwidth allocation, and to guarantee end-to-end reliability [3]. However, the Transmission Control Protocol (TCP) [4] and User Datagram Protocol (UDP) [5] are popular transport protocols and deployed widely in the Internet, neither may be a good choice for wireless sensor networks. There is no interaction between TCP or UDP and the lower-layer protocols such as routing and Media Access Control (MAC) algorithm. In wireless sensor networks, the lower layers can provide generalized information to the transport layer and %U http://www.hindawi.com/journals/isrn.sensor.networks/2012/104057/