%0 Journal Article %T Preparation of a Sustained Release Drug Delivery System for Dexamethasone by a Thermosensitive, In Situ Forming Hydrogel for Use in Differentiation of Dental Pulp %A Elham Khodaverdi %A Fatemeh Kheirandish %A Farnaz Sadat Mirzazadeh Tekie %A Bibi Zahra Khashyarmanesh %A Farzin Hadizadeh %A Hamideh Moallemzadeh Haghighi %J ISRN Pharmaceutics %D 2013 %R 10.1155/2013/983053 %X In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5£żmin. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration. 1. Introduction Pharmaceutical science has shown notable advancements in the development of novel drug delivery systems [1] in the form of microparticles [2, 3], nanoparticles [4, 5], and hydrogels [6, 7]. Most of these new carriers are made of polymers and particularly the biodegradable di- and tri block copolymers composed of hydrophobic and hydrophilic blocks, such as hydrophobic polycaprolactone [8, 9], polylactide [10, 11], poly propylene oxide [12], polylactide glycolide [13], and hydrophilic polyethylene glycol [14] and polyethylene oxide [15]. The copolymer structure allows the ready formation of nanomicelles and hydrogels due to physical crosslinking between hydrophobic sections [16]. These copolymers could also show intelligent behaviour with respect to phase transition and drug release profile [17]. Current smart delivery systems are focused on thermo-responsive and in situ gel-forming copolymers because of their ability to assume a gel form abruptly in response to a rise in temperature above the gelation temperature (the temperature at which the copolymer sol turns into a gel). This property makes a copolymer formulation injectable (sol) below body temperature and creates a sustained release system (gel) at body temperature [18¨C20]. PLGA-PEG-PLGA is a tri-block copolymer that consists of polyethylene glycol (PEG) and two polylactide glycolide (PLGA) blocks; the latter are composed of %U http://www.hindawi.com/journals/isrn.pharmaceutics/2013/983053/