%0 Journal Article %T Strain Echocardiography in Early Detection of Doxorubicin-Induced Left Ventricular Dysfunction in Children with Acute Lymphoblastic Leukemia %A Mohammed Al-Biltagi %A Osama Abd Rab Elrasoul Tolba %A Mohammed Ramadan El-Shanshory %A Nagla Abd El-Aziz El-Shitany %A Eslam El-Sayed El-Hawary %J ISRN Pediatrics %D 2012 %R 10.5402/2012/870549 %X Objective. To investigate the ability of two-dimensional longitudinal strain echocardiography (2DST), to detect the early doxorubicin cardiotoxicity. Patients and Methods. The study included 25 children with newly diagnosed acute lymphoblastic leukemia (ALL) aged 5¨C15 years and 30 healthy control children. They had echocardiographic examination with conventional 2-dimensional (2D), pulsed tissue Doppler (PTD), and 2DST echocardiography before and within 1 week after doxorubicin treatment. Results. There was no significant difference in left ventricle (LV) systolic and diastolic functions measured by conventional 2-D and PTD echocardiography between patients and controls. However, there was significant decrease in LV global and peak systolic strain detected by 2-DST echocardiography in study group than control. After doxorubicin treatment, there was no significant difference in LV systolic and diastolic functions measured by conventional 2-D and PTD echocardiography than before treatment except for prolonged IVCT and IVRT, but LV global and peak systolic strain was significantly lower after treatment. Conclusion. 2-D longitudinal strain echocardiography was more sensitive than conventional 2-D and PTD in detecting the early LV doxorubicin-induced cardiotoxicity in children with ALL. 1. Introduction Doxorubicin is one of the most effective available anthracycline chemotherapeutic agents that have been widely used in the treatment of pediatric malignancies. Its introduction has led to the successful treatment of childhood cancer with improved survival rates. Nearly two-thirds of survivors have one or more related chronic medical problems and may require multidisciplinary care [1]. Because doxorubicin plays a key role in the treatment of many malignancies, its loss from the field of cancer treatments would lead to a dramatic reduction in cure rates. Its efficacy is often limited by its related cardiotoxicity, which leads to cardiomyopathy that may evolve into heart failure [2¨C4]. Cardiotoxicity can arise acutely, during or shortly after treatment and regardless of dose in the form of cardiac arrhythmias, for example, sinus tachycardia, ventricular, and supraventricular. Pericarditis, potentially fatal congestive heart failure, and acute pulmonary edema can also occur during doxorubicin therapy caused by myocyte necrosis as a result of increased cardiac apoptosis and alteration of cardiac cytochrome P450 expression and arachidonic acid metabolism [5, 6]. Chronic dose-related cardiotoxicity is the most common and dangerous and can manifest as cardiac failure, %U http://www.hindawi.com/journals/isrn.pediatrics/2012/870549/