%0 Journal Article %T Diabetic and Metabolic Programming: Mechanisms Altering the Intrauterine Milieu %A Claudia Eberle %A Christoph Ament %J ISRN Pediatrics %D 2012 %R 10.5402/2012/975685 %X A wealth of epidemiological, clinical, and experimental studies have been linked to poor intrauterine conditions as well as metabolic and associated cardiovascular changes postnatal. These are novel perspectives connecting the altered intrauterine milieu to a rising number of metabolic diseases, such as diabetes, obesity, and hypercholesterolemia as well as the Metabolic Syndrome (Met S). Moreover, metabolic associated atherosclerotic diseases are connected to perigestational maternal health. The ¡°Thrifty Phenotype Hypothesis¡± introduced cross-generational links between poor conditions during gestation and metabolic as well as cardiovascular alterations postnatal. Still, mechanisms altering the intrauterine milieu causing metabolic and associated atherosclerotic diseases are currently poorly understood. This paper will give novel insights in fundamental concepts connected to specific molecular mechanisms ¡°programming¡± diabetes and associated metabolic as well as cardiovascular diseases. 1. Introduction Type 2 diabetes, obesity, and associated metabolic as well as cardiovascular diseases run an epidemic wave worldwide. Regarding to the World Health Organization (WHO) there are 347 millions people diagnosed with diabetes worldwide [1]. Furthermore, based on WHO fact sheets more than 1.4 billion adults were diagnosed overweight, in 2008, and of these more than 200 million men and approximately 300 million women were documented being obese [1]. Hence, over 40 million children under the age of 5 years were diagnosed overweight in the year 2010 [1]. Causes are seen in life style factors, such as high carbohydrate, respectively, high fat diets, and lack of exercise leading to obesity causing insulin resistance, type 2 diabetes and beta cell dysfunction, as well as associated metabolic and cardiovascular diseases. But, there is more and more evidence, that maternal peri-gestational genomic and environmental conditions may ¡°imprint¡± metabolic and cardiovascular conditions in their offspring. Furthermore, novel insights underline important molecular and epigenetic changes in dysmetabolic pregnancies altering the intrauterine environment featuring evident programming concepts of metabolic and cardiovascular diseases in these offspring. Fundamental concepts of molecular and epigenetic mechanisms as well as key functions of the uteroplacental unit are starting to emerge quickly. Based on highlighted literature, especially Fernandez-Twinn et al. [2], this paper will give novel and future-directed insights in essential concepts linked to molecular mechanisms of %U http://www.hindawi.com/journals/isrn.pediatrics/2012/975685/