%0 Journal Article %T Three-Dimensional Volume-Rendered Series Complements 2D Orthogonal Multidetector Computed Tomography in the Evaluation of Abnormal Spinal Curvature in Patients at a Major Cancer Center: A Retrospective Review %A J. Matthew Debnam %A Leena Ketonen %A Nandita Guha-Thakurta %J ISRN Orthopedics %D 2012 %R 10.5402/2012/639189 %X Background. Abnormal spinal curvature is routinely assessed with plain radiographs, MDCT, and MRI. MDCT can provide two-dimensional (2-D) orthogonal as well as reconstructed three-dimensional volume-rendered (3-D VR) images of the spine, including the translucent display: a computer-generated image set that enables the visualization of surgical instrumentation through bony structures. We hypothesized that the 3-D VR series provides additional information beyond that of 2-D orthogonal MDCT in the evaluation of abnormal spinal curvature in patients evaluated at a major cancer center. Methods. The 3-D VR series, including the translucent display, was compared to 2-D orthogonal MDCT studies in patients with an abnormal spinal curvature greater than 25 degrees and scored as being not helpful (0) or helpful (1) in 3 categories: spinal curvature; bony definition; additional findings (mass lesions, fractures, and instrumentation). Results. In 38 of 48 (79.2%) patients assessed, the 3-D VR series were scored as helpful in 63 of 144 (43.8%) total possible categories (32 spinal curvature; 14 bony definition; 17 additional findings). Conclusion. Three-dimensional MDCT images, including the translucent display, are complementary to multiplanar 2-D orthogonal MCDT in the evaluation of abnormal spinal curvature in patients treated at a major cancer center. 1. Background Abnormal spinal curvature may be idiopathic or secondary to dystrophic etiologies, such as congenital, traumatic, and malignant causes. Initial assessment and followup of patients with an abnormal spinal curvature have routinely been performed using plain radiographs [1]. To evaluate dystrophic features, magnetic resonance imaging (MRI) has also been utilized [2, 3]. Computed tomography (CT) is proving to be of benefit in the assessment of patients with an abnormal spinal curvature [4¨C10]. Recent advances in multidetector CT (MDCT) technique allow the evaluation of the spine in multiple 2-D planes (Figures 1(a) and 2(a)) and with a three-dimensional volume-rendered series (3-D VR) (Figures 1(b) and 2(b)). In addition, the data from the MDCT study can also be used to generate a translucent display, a computer-generated image set that provides 3-D images of the spine enabling assessment of surgical instrumentation through the bony structures (Figures 2(c) and 2(d)). The 3-D VR series, including the translucent display, which are generated by computer manipulation of the axial CT source data without additional radiation, have led to a growth in demand for MDCT for the imaging of the spine by the spine %U http://www.hindawi.com/journals/isrn.orthopedics/2012/639189/