%0 Journal Article %T Impact of Real-Time Elastography versus Systematic Prostate Biopsy Method on Cancer Detection Rate in Men with a Serum Prostate-Specific Antigen between 2.5 and 10£¿ng/mL %A Gianluigi Taverna %A Paola Magnoni %A Guido Giusti %A Mauro Seveso %A Alessio Benetti %A Rodolfo Hurle %A Piergiuseppe Colombo %A Francesco Minuti %A Fabio Grizzi %A Pierpaolo Graziotti %J ISRN Oncology %D 2013 %R 10.1155/2013/584672 %X The actual gold standard for the diagnosis of prostate cancer includes the serum prostate-specific antigen, the digital rectal examination, and the ultrasound-guided systematic prostate biopsy sampling. In the last years, the real-time elastography has been introduced as an imaging technique to increase the detection rate of prostate cancer and simultaneously reduce the number of biopsies sampled for a single patient. Here, we evaluated a consecutive series of 102 patients with negative digital-rectal examination and transrectal ultrasound, and prostate-specific antigen value ranging between 2.5£¿ng/mL and 10£¿ng/mL, in order to assess the impact of real-time elastography versus the systematic biopsy on the detection of prostate cancer. We found that only 1 out of 102 patients resulted true positive for prostate cancer when analysed with real-time elastography. In the other 6 cases, real-time elastography evidenced areas positive for prostate cancer, although additional neoplastic foci were found using systematic biopsy sampling in areas evidenced by real-time elastography as negative. Although additional studies are necessary for evaluating the effectiveness of this imaging technique, the present study indicates that the limited accuracy, sensitivity, and specificity do not justify the routine application of real-time elastography in prostate cancer detection. 1. Introduction Prostate cancer (PC) remains the most common cancer in men in the Western world [1]. The gold standard tools currently applied for the diagnosis of PC include the serum prostate-specific antigen (PSA), the digital rectal examination (DRE), and the ultrasound-guided systematic prostate biopsy sampling [2¨C4]. Although over the years research has tried to increase the sensitivity and specificity of this multiapproach, PC detection rate is still inadequate [3, 5, 6], being at the first biopsy no more than 20%¨C30%. New imaging modalities for detecting PC are currently claimed and represent the subject of intensive and continuous research. In the last years, the real-time elastography (RTE) has been introduced as a new technique to increase the detection rate of PC and simultaneously reduce the number of biopsies sampled for single patient [7¨C10]. Elastography imaging is based on the higher density of cancerous cells and blood vessels, resulting in a major stiffness than that of the natural tissue [11, 12]. Several studies have shown that RTE successfully increases the detection rate of different neoplasia including thyroid, breast, and PC. Salomon et al. reported that positive predictive %U http://www.hindawi.com/journals/isrn.oncology/2013/584672/