%0 Journal Article %T The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens %A Madhu Bala Sathyanarayanan %A Reneta Balachandranath %A Yuvasri Genji Srinivasulu %A Sathish Kumar Kannaiyan %A Guruprakash Subbiahdoss %J ISRN Microbiology %D 2013 %R 10.1155/2013/272086 %X Microbial biofilms on biomaterial implants or devices are hard to eliminate by antibiotics due to their protection by exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune-cells. Application of metals in their nanoparticulated form is currently considered to resolve bacterial infections. Gold and iron-oxide nanoparticles are widely used in different medical applications, but their utilisation to eradicate biofilms on biomaterials implants is novel. Here, we studied the effect of gold and iron oxide nanoparticles on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. We report that biofilm growth was reduced at higher concentrations of gold and iron-oxide nanoparticles compared to absence of nanoparticles. Thus nanoparticles with appropriate concentration could show significant reduction in biofilm formation. 1. Introduction In modern medicine, biomaterial implants and devices to support and restore functioning of body parts have become common with high success rates in terms of improved quality of life. A serious problem associated with the use of biomaterials is the occurrence of microbial infections. Biomaterial-associated infections (BAI), although of relatively low incidence, represent serious complications related to high mortality rates and high health care costs [1]. According to the studies conducted by European Centre for Disease Prevention and Control, the average prevalence of healthcare-associated infections in Europe was 7.1%; that is, approximately 4,131,000 patients were affected [2]. Moreover, costs related to healthcare-associated infection are greater than ?7 billion in Europe annually [2]. A major proportion of the healthcare-associated infections and costs relate to BAI. To give an example, it has been reported that for approximately 800,000 artificial orthopaedic joints implanted in Europe, at least 1.5% will suffer from periprosthetic infections [2]. Whereas the costs of a primary implantation of an artificial hip or knee joint amount approximately ?15.000, the costs of revision surgery due to infection easily triple [2]. With the average life-expectancy steadily increasing, concurrent with a nonnegotiable demand for a high quality of life, the use of biomaterials for the restoration of function will increase, including the incidence of BAI. In India, an estimation of 10% to 30% patients admitted to hospitals acquire nosocomial infection, and up to 70% of organisms causing infections are resistant to at least one antibiotic [3]. Staphylococcus epidermidis and %U http://www.hindawi.com/journals/isrn.microbiology/2013/272086/