%0 Journal Article %T Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester %A Joshua T. Ellis %A Cody Tramp %A Ronald C. Sims %A Charles D. Miller %J ISRN Microbiology %D 2012 %R 10.5402/2012/753892 %X The microbial diversity and metabolic potential of a methanogenic consortium residing in a 3785-liter anaerobic digester, fed with wastewater algae, was analyzed using 454 pyrosequencing technology. DNA was extracted from anaerobic sludge material and used in metagenomic analysis through PCR amplification of the methyl-coenzyme M reductase ¦Á subunit (mcrA) gene using primer sets ML, MCR, and ME. The majority of annotated mcrA sequences were assigned taxonomically to the genera Methanosaeta in the order Methanosarcinales. Methanogens from the genus Methanosaeta are obligate acetotrophs, suggesting this genus plays a dominant role in methane production from the analyzed fermentation sample. Numerous analyzed sequences within the algae fed anaerobic digester were unclassified and could not be assigned taxonomically. Relative amplicon frequencies were determined for each primer set to determine the utility of each in pyrosequencing. Primer sets ML and MCR performed better quantitatively (representing the large majority of analyzed sequences) than primer set ME. However, each of these primer sets was shown to provide a quantitatively unique community structure, and thus they are of equal importance in mcrA metagenomic analysis. 1. Introduction Global energy requirements are heavily dependent on fossil fuels such as oil, coal, and natural gas. With the anticipation of fossil fuels being exhausted in the future, novel strategies need to be discovered for alternative energy generation. Of increasing importance is biogas production from renewable biomass feedstocks. The Logan City Wastewater Lagoon System (LCWLS) is an open-pond wastewater treatment facility that supports the growth of microbial communities that work symbiotically to metabolize and stabilize organic matter [1]. The microbial community present within the anaerobic sludge sediment has been used as inoculum for pilot scale anaerobic digestion processes where algal biomass is used as substrate. Algal biomass that occurs naturally in the LCWLS has been effectively harvested from the wastewater effluent and used for methane generation. Algae have been identified as a promising renewable energy feedstock due to their effective conversion of solar energy to biomass [2], which occurs naturally in this open-pond wastewater treatment facility. Anaerobically digested algal biomass generated from this system provides an appropriate technological approach to algal biofuels [3]. To date, methanogenic Archaea community-based studies on algal fed anaerobic digesters inoculated with wastewater sludge sediment %U http://www.hindawi.com/journals/isrn.microbiology/2012/753892/