%0 Journal Article %T A Critical Review of Computational Methods and Their Application in Industrial Fan Design %A Alessandro Corsini %A Giovanni Delibra %A Anthony G. Sheard %J ISRN Mechanical Engineering %D 2013 %R 10.1155/2013/625175 %X Members of the aerospace fan community have systematically developed computational methods over the last five decades. The complexity of the developed methods and the difficulty associated with their practical application ensured that, although commercial computational codes date back to the 1980s, they were not fully exploited by industrial fan designers until the beginning of the 2000s. The application of commercial codes proved to be problematic as, unlike aerospace fans, industrial fans include electrical motors and other components from which the flow will invariably separate. Consequently, industrial fan designers found the application of commercial codes challenging. The decade from 2000 to 2010 was focused on developing techniques that would facilitate converged solutions that predicted the fansĄŻ performance characteristics over the stable part of their operating range with reasonable accuracy, using a practical computational effort. In this paper, we focus on elucidating aspects of the flow physics that one cannot easily study in a laboratory environment, discussing the challenges involved and the relative merits of the available modelling techniques. The paper ends with a discussion of the practical problems associated with the use of commercial codes in a development environment and finally the legislation that is driving the need for aerospace style computation methods. 1. Introduction Industrial fan designers have historically relied on empirical design methodologies based upon an Euler analysis of velocity triangles [1], empirical correlations [2], experimental fluid dynamics [3], and fan noise measurements [4, 5]. Engineers have developed these empirical design methodologies over many decades, with each industrial fan manufacturer developing its own proprietary empirical correlations that aid in applying the basic methodology in specific applications. Unlike aerospace fan designers, industrial fan designers have to apply their design methodologies into a wide range of different applications. At one extreme are the cooling fans required for electronic equipment that can be no more than a few centimetres in diameter [6], and at the other extreme are fans absorbing up to 25 MW in induced draft power plant applications [7]. It is this breadth of application that has resulted in the different empirical approaches adopted by competing industrial fan manufacturers, each treating their proprietary empirical approaches as a source of competitive advantage. The historic view that the empirical approaches to industrial fan design constitute a form %U http://www.hindawi.com/journals/isrn.mechanical.engineering/2013/625175/