%0 Journal Article %T Experimental Characterisation of the Far-Field Noise in Axial Fans Fitted with Shaped Tip End-Plates %A S. Bianchi %A A. Corsini %A A. G. Sheard %J ISRN Mechanical Engineering %D 2012 %R 10.5402/2012/212358 %X The authors investigate the far-field noise emissions of a datum fan blade fitted with tip end-plate geometries, originally designed to control the leakage vortex swirl level. The end-plate geometries influence the tip-leakage flow, vortex formation, and swirl level. In doing so, the end-plate geometries influence the sound-power levels. After an evaluation of fan rotors' aerodynamic performance, the study compares the rotors' far-field noise signature characterised in terms of sound-power and pressure-level spectra to enable and assess the end-plate acoustic pay-off. The investigation attempts to establish a cause-and-effect relationship between the tip-flow dynamics and the radiated sound fields, exploring the diverse directivity patterns. The authors found a tonal reduction, due to the enhanced blade-tip end-plates and clarified the relevance of the tip features influencing the radial distribution of the noise sources using coherence analysis. The modified multiple-vortex breakdown end-plate design was effective in reducing the broadband noise, giving an improvement in the frequency range of the turbulent noise. 1. Introduction Researchers have studied the link between the aerodynamic features of the fan rotor and its acoustic emissions extensively. In particular, Wright [1] and Cumpsty¡¯s [2] works have enhanced the understanding of axial-turbomachinery aeroacoustics. Cumpsty [2] concluded that, with the exception of the low-frequency range of high-speed machines, the mechanism that determines broadband noise in subsonic fans is the same as that in supersonic tip-speed fans and compressors. According to Wright [1], this is due to the prominence of rotor noise originating from turbulent boundary layers. Researchers have identified a variety of mechanisms as causing noise signatures. The dominant sources, they believe, are the rotor blades, which generate noise as a result of turbulent wake shedding from the interaction between the end-wall boundary layer and the rotor tip. In view of the aerodynamic effect that tip-leakage flow exerts on wake and secondary flows, the industry widely recognises this mechanism as one of the most significant sources of noise [3, 4]. The advent of stringent environmental regulations with respect to noise production has stimulated academics and practitioners alike to pursue the development of concepts and technologies that are likely to reduce fan noise either by attenuating noise propagation or by controlling the noise at source. In this regard, researchers have not given the deserved attention to the control and %U http://www.hindawi.com/journals/isrn.mechanical.engineering/2012/212358/