%0 Journal Article %T Comparison of Tidalites in Siliciclastic, Carbonate, and Mixed Siliciclastic-Carbonate Systems: Examples from Cambrian and Devonian Deposits of East-Central Iran %A Hamed Zand-Moghadam %A Reza Moussavi-Harami %A Asadollah Mahboubi %A Hoda Bavi %J ISRN Geology %D 2013 %R 10.1155/2013/534761 %X For the comparison of lithofacies in siliciclastic, carbonate, and mixed siliciclastic-carbonate tidal systems, three successions including Top Quartzite (Lower-Middle Cambrian), Deranjal Formation (Upper Cambrian), and Padeha Formation (Lower-Middle Devonian) in the north of Kerman and Tabas regions (SE and E central Iran) were selected and described, respectively. Lithofacies analysis led to identification of 14 lithofacies (Gcm, Gms, Gt, Sp, St, Sh, Sl, Sr, Sm, Se, Sr(Fl), Sr/Fl, Fl(Sr), and Fl) and 4 architectural elements (CH, LA, SB, and FF) in the Top Quartzite, 7 lithofacies (Dim, Dp, Dr, Ds, Dl, Dr/Dl, and Fcl) and 2 architectural elements (CH, CB) in the Deranjal Formation, and 17 lithofacies (Sp, St, Sh, Sl, Sr, Se, Sr(Fl), Sr/Fl, Fl(Sr), Fl, Dr, Ds, Sr/Dl, El, Efm, Efl, and Edl) and 5 architectural elements (CH, LA, SB, FF, and EF) in the Padeha Formation that have been deposited under the influence of tides. The most diagnostic features for comparison of the three tidalite systems are sedimentary structures, textures, and fabrics as well as architectural elements (lithofacies association). The CH element in siliciclastics has the highest vertical thickness and the least lateral extension, while in the carbonate tidalites, it has the least vertical thickness and the most lateral extension compared to in other systems. 1. Introduction The term Tidalites was introduced by Klein [2, 3] to designate a new process for sedimentary facies, deposited by tidal currents [4]. It is now applied to all sediments and sedimentary structures that have accumulated under the influence of tides [5]. Three subenvironments, including subtidal, intertidal, and supratidal, can be distinguished on the basis of sedimentary structures, textures, lithologies, and vertical successions of such facies. Tidalites are somewhat synonymous with peritidal sediments, formed near the tidal zone [6¨C8]. Although tidalites are common in passive margins, they also occur in failed rifts, intracratonic, foreland, back-arc/fore-arc, and pull-apart basins (e.g., [9¨C11]). Sedimentary structures are the most diagnostic features used in analyzing and describing tidal flat deposits. These sedimentary lines of evidence reflect different types of physical, chemical, and biochemical conditions in tidal facies. In another word, each different sedimentary structure is representative of one particular subenvironment within the tidal zone [5, 11]. Although sedimentary structures in both siliciclastic and carbonate tidal zones are similar, they differ in their abundance. The mixed %U http://www.hindawi.com/journals/isrn.geology/2013/534761/