%0 Journal Article %T Decomposition and Nutrient Release Dynamics of Ficus benghalensis L. Litter in Traditional Agroforestry Systems of Karnataka, Southern India %A B. Dhanya %A Syam Viswanath %A Seema Purushothaman %J ISRN Forestry %D 2013 %R 10.1155/2013/524679 %X Decomposition and nutrient release dynamics of leaf litter of Ficus benghalensis, a common agroforestry species in southern dry agroclimatic zone of Karnataka, were studied using the standard litter bag technique in surface and subsurface methods of application. Results revealed a marginally higher rate of decay in subsurface placement (22.5% of initial litter mass remaining after one year of decomposition) compared to surface treatment (28.3% of initial litter mass remaining). Litter quality (lignin content and lignin/N ratio) and climatic and soil conditions of the study site (monthly rainfall and soil moisture) were found to influence the rate of decomposition. Mineralisation of litter was found to be in the order K£¿>£¿N£¿>£¿P. The paper further discusses the implications of these results for rainfed farming in Mandya and emphasises the potential of F. benghalensis in reducing nutrient input costs for resource-poor dryland farmers. 1. Introduction Agroforestry systems with scattered trees in croplands have traditionally played a pivotal role in sustaining rural livelihoods in semiarid zones of the world. In Mandya district of southern dry agroclimatic zone of Karnataka, trees of the genus Ficus have been integral components of traditional rainfed agroecosystems with field crops like millets, pulses, maize and oil seeds. Ficus benghalensis L. is the major species of Ficus grown in these agroforestry systems, followed by Ficus religiosa L., Ficus amplissima Sm., Ficus virens Aiton, Ficus racemosa L., and Ficus mysorensis var. pubescens (Roth). [1]. In preliminary surveys held in Mandya, farmers were appreciative of the various direct benefits (fodder, firewood, small timber, and shade) and ecological services from these trees, especially soil enrichment through litterfall. Farmer interviews also revealed that litter from Ficus trees helped to reduce compost usage by 3 tonnes per hectare. However, scientific studies on the value of Ficus trees as source of litter nutrients in agroforestry systems of semiarid tropics are lacking. The relative value of litter as a source of nutrient is dependent on its decomposition rate, which in turn controls the release of the tissue-held mineral ions [2]. Further, the process of decomposition is regulated by a host of variables including physical and chemical properties (quality) of litter, climate, soil properties, and decomposer communities consisting of microorganisms and soil invertebrates [3, 4]. In the present study, leaf litter decomposition of Ficus benghalensis, factors influencing decomposition process, and %U http://www.hindawi.com/journals/isrn.forestry/2013/524679/