%0 Journal Article %T An Overview of Indian Forestry Sector with REDD+ Approach %A Vandana Sharma %A Smita Chaudhry %J ISRN Forestry %D 2013 %R 10.1155/2013/298735 %X Forest ecosystems cover large parts of the terrestrial land surface and are major components of the terrestrial carbon (C) cycle. The primary objective of REDD+ is to minimize the carbon emissions from deforestation in developing countries and enhance their carbon storage capacities through sustainable management programme. The recognition of REDD+ throughout the international community, its support by donors and promotion in the perspectives of the UNFCCC negotiations are mainly due to vital functions of forests in regulating the worldĄŻs climate. This paper gives an overview of REDD+ approach and its methodological guidance in context of Indian forestry sector. The strengthening of governance arrangements and institutions in India needs to integrate learning through piloting, adaptive management, and knowledge transfer. A phased approach for India for REDD+ implementation having safeguards for local communities and biodiversity along with a system of their reporting and capacity building has to be developed. Successfully designed REDD+ implementation in India entirely depends on a rigid, scalable, and reliable finance mechanism, technological assistance, and effective forest-related legislation along with transparent and equitable political momentum which has support of core stakeholder groups. 1. Introduction Forests, like other ecosystems, are affected by climate change. Forests also influence climate, absorbing CO2 from the atmosphere and storing carbon in wood, leaves, litter, roots, and soil. The carbon is released back into the atmosphere when forests are cleared or burnt. By acting as sinks, forests are considered to moderate global climate change [1]. Climate change is one of the most significant global challenges of our time, and addressing it requires the urgent formulation of comprehensive and effective policy responses [2]. Natural forests are more resilient to climate change and disturbances than plantations because of their genetic, taxonomic, and functional biodiversity. This resilience includes regeneration after fire, resistance to and recovery from pests and diseases, and adaptation to changes in radiation, temperature, and water availability (including those resulting from global climate change). While the genetic and taxonomic composition of forest ecosystems changes over time, natural forests will continue to take up and store carbon as long as there is adequate water and solar radiation for photosynthesis [3]. Forests play a major role in the global carbon (C) cycle because they store 80% of the global aboveground C of the %U http://www.hindawi.com/journals/isrn.forestry/2013/298735/