%0 Journal Article %T Batch Adsorption of Maxilon Red GRL from Aqueous Solution by Natural Sugarcane Stalks Powder %A Gamal Owes El-Sayed %A Talaat Younis Mohammed %A Ashraf Abd-Allah Salama %J ISRN Environmental Chemistry %D 2013 %R 10.1155/2013/514154 %X Sugarcane stalks powder was tested for its efficiency of removing a textile dye Maxilon Red GRL from aqueous solution. Different parameters affecting dye removal efficiency were studied. These parameters include contact time, initial dye concentration, adsorbent dose, ionic strength, pH, and temperature. Langmuir and Freundlich isotherm models were applied to the equilibrium data. The data fitted well with the Langmuir isotherm ( ). The maximum monolayer adsorption capacity ( ) was found to be 20.96£¿mg/g at an initial pH of 7.2. The temperature variation study showed that dye adsorption is exothermic and spontaneous with increased randomness at the solid solution interface. The results indicated that sugarcane stalks could be an alternative for more costly adsorbents used for dye removal. The kinetic of the adsorption process followed the pseudo second-order kinetics model. 1. Introduction The textile industry is among important sources of contamination responsible for the continuous pollution of the environment. Production of textiles and volume of wastewater containing processed textile dyes steadily increase [1]. Large amounts of the dyestuff are lost directly into wastewater and consequently have a detrimental effect on flora and fauna [2]. There are more than 100,000 dyes available commercially; most of which are difficult to decolorize due to their complex structure and synthetic origin as they are designed to resist fading upon exposure to different factors as light, water, and oxidizing agents and as such are very stable and difficult to degrade [3, 4]. The polluting effects of dyes against aquatic environment can also be the result of toxic effects due to their long time presence in environment (i.e., half-life time of several years), accumulation in sediments but especially in fishes or other aquatic life forms, and decomposition of pollutants in carcinogenic or mutagenic compounds but also low aerobic biodegradability [5¨C7]. Various techniques have been employed for the removal of dyes from wastewaters including, physical, physico-chemical, and chemical processes [8¨C12]. All these methods have different color removal capabilities, costs, and operating rates. One of the most effective and proven treatments with potential application in textile wastewater treatment is adsorption. This process has been found to be superior compared to other techniques for wastewater treatment in terms of its capability for efficiently adsorbing a broad range of adsorbates and its simplicity [13, 14]. Adsorption process consists in the transfer of soluble organic %U http://www.hindawi.com/journals/isrn.environmental.chemistry/2013/514154/