%0 Journal Article %T Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke %A L¨ªvia Andrade Vit¨®ria %A Thaiane Rodrigues Aguiar %A Poliana Ramos Braga Santos %A Andrea N¨®brega Cavalcanti %A Paula Mathias %J ISRN Dentistry %D 2013 %R 10.1155/2013/605847 %X Aim. To evaluate the effect of cigarette smoke on water sorption and solubility of four adhesive systems. Materials and Methods. Sixteen disks of each adhesive system were prepared (Adper Scotchbond Multipurpose Adhesive (SA); Adper Scotchbond Multipurpose Adhesive System (Adhesive + Primer) (SAP); Adper Single Bond Plus (SB); Adper Easy One (EO)). Specimens were desiccated until a constant mass was obtained and divided into two groups . One-half of the specimens were immersed in deionized water, while the other half were also immersed, but with daily exposure to tobacco smoke. After 21 days, disks were measured again and stored in desiccators until constant mass was achieved. Data were calculated according to ISO specifications and statistically analyzed. Results. The tobacco smoke only significantly affected the water sorption and solubility of EO. There were significant differences in both analyses among materials tested. The SB exhibited the highest water sorption, followed by EO, which demonstrated significantly higher solubility values than SB. The SA and SAP showed low water sorption and solubility, and there were no significant differences between the two. Conclusion. Regardless of smoke exposure, both simplified adhesive systems presented an inferior performance that could be related to the complex mixture of components in such versions. 1. Introduction Many studies have shown that cigarette smoking is associated with deleterious health effects such as heart disease [1], chronic obstructive pulmonary disease, cancer [2], fertility problems [3], and periodontal disease [4]. In cosmetic restorative dentistry, some of the substances coming from tobacco can be absorbed by resin composite, dentin, and enamel surface [5] and lead to tooth/composite discoloration [6¨C10]. Moreover, bond strength reduction has been described due to the fact that cigarette particles may prevent effective contact between dentin and resin composite [11]. The mainstream smoke emitted from the mouth end is complex and composed by many physical and chemical processes [12]. In general, smoke formation is mostly produced by combustion and pyrolysis reactions and can be classified in two distinct phases. The first is called the vapour phase, consisting mainly of nitrogen, oxygen, carbon monoxide, carbon dioxide, acetaldehyde, methane, hydrogen cyanide, nitric acid, and acetone. The second category is the particulate phase. It consists of nicotine, water, and tobacco-specific nitrosamines ranging from 0.1 to 1.0£¿¦Ìm in diameter [12¨C17]. Beside many research reports on the staining %U http://www.hindawi.com/journals/isrn.dentistry/2013/605847/