%0 Journal Article %T Characterization of Corrosive Bacterial Consortia Isolated from Water in a Cooling Tower %A Rajasekar Aruliah %A Yen-Peng Ting %J ISRN Corrosion %D 2014 %R 10.1155/2014/803219 %X An analysis of a culturable corrosive bacterial community in water samples from a cooling tower was performed using traditional cultivation techniques and its identification based on 16S rRNA gene sequence. Seven aerobic bacterial species were identified: Pseudomonas putida ARTYP1, Pseudomonas aeruginosa ARTYP2, Massilia timonae ARTYP3, Massilia albidiflava ARTYP4, Pseudomonas mosselii ARTYP5, Massilia sp. ARTYP6, and Pseudomonas sp. ARTYP7. Although some of these species have commonly been observed and reported in biocorrosion studies, the genus Massilia is identified for the first time in water from a cooling tower. The biocorrosion behaviour of copper metal by the new species Massilia timonae ARTYP3 was selected for further investigation using a weight loss method, as well as electrochemical and surface analysis techniques (SEM, AFM, and FTIR). In contrast with an uninoculated system, thin bacterial biofilms and pitting corrosion were observed on the copper metal surface in the presence of M. timonae. The use of a biocide, bronopol, inhibited the formation of biofilm and pitting corrosion on the copper metal surface. 1. Introduction In order to implement efficient monitoring and control strategies for the inhibition of biocorrosion, it is important to have knowledge of the microbial population responsible for this phenomenon, as well as interactions of different microorganisms with metallic surfaces [1¨C8]. In many industries, cooling towers are commonly used for heat transfer from recirculated water to the atmosphere, typically by means of trickling or spraying the water over a material with high surface area [9]. These towers generally have sizable water reservoirs, with temperature typically maintained between 25¡ãC and 35¡ãC. These conditions provide an ideal environment for microbial growth and propagation [10¨C13]. Both microbes and the substrates for microbial growth can either be present in the incoming water or be introduced from the atmosphere. Copper and copper alloys, which are used in many cooling tower systems, are known to be susceptible to microbiologically influenced corrosion (MIC) [10, 14]. Corrosion and its products have a negative impact on heat transfer and can cause a decrease in cooling efficiency of the cooling tower. Organisms responsible for MIC, including bacteria, microalgae and fungi readily attach themselves to the copper surface by excreting extracellular polymeric substances (EPS) to form a slime layer [15¨C18] and thereby initiate corrosion. A multilayer structure of microorganisms and their EPS have been reported to be %U http://www.hindawi.com/journals/isrn.corrosion/2014/803219/