%0 Journal Article %T Fullerene Nanotubes Fabricated with Light Irradiation as a Critical Influence Factor %A Yongtao Qu %A Wenwen Yu %A Nana Niu %A Shaocen Liang %A Guibao Li %A Guangzhe Piao %J ISRN Condensed Matter Physics %D 2012 %R 10.5402/2012/140842 %X Crystalline fullerene C60 nanotubes were prepared simply via liquid-liquid interfacial precipitation using the mixture of C60-saturated pyridine and isopropyl alcohol. C60-saturated pyridine solution was exposed to visible light to promote the growth of fullerene C60 nanotubes. The average diameters of the fullerene particles in C60-pyridine colloid solution after irradiation were characterized by dynamic light scattering. After light irradiation, an outer separated layer of pyridine surrounds the fullerene particles because of the charge transfer complexes formation. The mean ratios of inner diameter to outer diameter of fullerene C60 nanotubes fabricated at different irradiation time and wavelength were given in this paper for the first time. On the basis of the relationship between the average diameters of the fullerene particles in C60-pyridine colloid solution and the mean ratio of inner diameter to outer diameter of FNTs fabricated after irradiation, outer separated layer of pyridine surrounding the fullerene particles was supposed to play an important role in the formation process of fullerene C60 nanotubes. 1. Introduction Since the discovery of carbon nanotube (CNT), one-dimensional (1D) nanometer-scale materials have been extensively studied owing to their unique structures and physical properties, which lead them to a range of potential applications in the field of nanometer-scale devices. C60 is a well-known fullerene prototype, and its zero-dimensional structure has been generally accepted [1]. It has been expected that the 1D tube of C60, prepared via the self-assembly of zero dimensional C60, will possess the novel optoelectronic and magnetic properties. Fullerene C60 nanofibers (FNFs) have been attracting much attention in recent years [2¨C5] and found a number of potential applications, such as field-effect transistors [6], solar cells [7], fuel cell catalyst carriers [8], and electrodes [9, 10]. Recently, various synthesis methods have been developed for the preparation of fullerene C60 nanotubes (FNTs), such as solution evaporation [2], template technique [3], surfactant-assisted method [11], and liquid-liquid interfacial precipitation (LLIP) method [12, 13]. Compared to other synthesis methods, the LLIP is simple and financially viable. FNTs can be achieved at room temperature and without the need for catalysts or surfactants. However, the formation mechanism of the FNTs during the simple and easy to operate LLIP is not clear up till now. So far, several possible mechanisms have been proposed, such as ¡°2+2¡± cycloaddition [5], core %U http://www.hindawi.com/journals/isrn.cmp/2012/140842/