%0 Journal Article %T An Overview of Recent Research Results and Future Research Avenues Using Simulation Studies in Project Management %A Mario Vanhoucke %J ISRN Computational Mathematics %D 2013 %R 10.1155/2013/513549 %X This paper gives an overview of three simulation studies in dynamic project scheduling integrating baseline scheduling with risk analysis and project control. This integration is known in the literature as dynamic scheduling. An integrated project control method is presented using a project control simulation approach that combines the three topics into a single decision support system. The method makes use of Monte Carlo simulations and connects schedule risk analysis (SRA) with earned value management (EVM). A corrective action mechanism is added to the simulation model to measure the efficiency of two alternative project control methods. At the end of the paper, a summary of recent and state-of-the-art results is given, and directions for future research based on a new research study are presented. 1. Introduction Completing a project on time and within budget is not an easy task. Monitoring and controlling projects consists of processes to observe project progress in such a way that potential problems can be identified in a timely manner and corrective actions can be taken, when necessary, to bring endangered projects back on track. The key benefit is that project performance is observed and measured regularly to identify variances from the project baseline schedule. Therefore, monitoring the progress and performance of projects in progress using integrated project control systems requires a set of tools and techniques that should ideally be integrated into a single decision support system. In this paper, such a system is used in a simulation study using the principles of dynamic scheduling [1¨C3]. The term dynamic scheduling is used to refer to an integrative project control approach using three main dimensions which can be briefly outlined along the following lines. (i)Baseline scheduling is necessary to construct a timetable that provides a start and finish date for each project activity, taking activity relations, resource constraints, and other project characteristics into account and aiming to reach a certain scheduling objective. (ii)Risk analysis is crucial to analyse the strengths and weaknesses of the project baseline schedule in order to obtain information about the schedule sensitivity and the impact of potential changes that undoubtedly occur during project progress. (iii)Project control is essential to measure the (time and cost) performance of a project during its progress and to use the information obtained during the scheduling and risk analysis steps to monitor and update the project and to take corrective actions in case of %U http://www.hindawi.com/journals/isrn.computational.mathematics/2013/513549/