%0 Journal Article %T A Whole Genome Pairwise Comparative and Functional Analysis of Geobacter sulfurreducens PCA %A Ashok Selvaraj %A Subazini Thankaswamy Kosalai %A Rajadurai Chinnasamy Perumal %A Subhashini Pitchai %A Gopal Ramesh Kumar %J ISRN Computational Biology %D 2013 %R 10.1155/2013/850179 %X Geobacter species are involved in electricity production, bioremediations, and various environmental friendly activities. Whole genome comparative analyses of Geobacter sulfurreducens PCA, Geobacter bemidjiensis Bem, Geobacter sp. FRC-32, Geobacter lovleyi SZ, Geobacter sp. M21, Geobacter metallireducens GS-15, Geobacter uraniireducens Rf4 have been made to find out similarities and dissimilarities among them. For whole genome comparison of Geobacter species, an in-house tool, Geobacter Comparative Genomics Tool (GCGT) has been developed using BLASTALL program, and these whole genome analyses yielded conserved genes and they are used for functional prediction. The conserved genes identified are about 2184 genes, and these genes are classified into 14 groups based on the pathway information. Functions for 74 hypothetical proteins have been predicted based on the conserved genes. The predicted functions include pilus type proteins, flagellar proteins, ABC transporters, and other proteins which are involved in electron transfer. A phylogenetic tree from 16S rRNA of seven Geobacter species showed that G. sulfurreducens PCA is closely related to G. metallireducens GS-15 and G. lovleyi SZ. For evolutionary study, acetate kinase protein is used, which showed closeness to Pelobacter propionicus, Pelobacter carbinolicus, and Deferribacteraceae family bacterial species. These results will be useful to enhance electricity production by using biotechnological approaches. 1. Introduction Geobacter species have been placed in the Geobacteraceae family which falls under the ¦Ä-Proteobacteria class. They are found in abundance where Fe(III) reduction is important, and these reductions play an important role in bioremediation [1]. These species have the ability to transfer electrons directly to electrodes or metals without any electron mediators and as a result they produce electricity or precipitate soluble metals [2, 3]. Geobacter species are involved in a variety of environmental friendly actions like bioremediation, electricity production, and so forth [2, 4]. Geobacter species till now have shown higher current production compared to other organisms, and these species are found to be having nanowires, which allows it to reach distant electron acceptors, and in turn helps in making a microbial fuel cell easier [5]. Geobacter species which are a strictly anaerobic organism also proved to be having the ability to grow in low oxygen concentrations, and this has effects on this organism¡¯s growth in the subsurface environment [6]. As there is an increase in genome %U http://www.hindawi.com/journals/isrn.computational.biology/2013/850179/