%0 Journal Article %T Joint MMSE Transceiver Designs and Performance Benchmark for CoMP Transmission and Reception %A Jialing Li %A Enoch Lu %A I-Tai Lu %J ISRN Communications and Networking %D 2012 %R 10.5402/2012/682090 %X Coordinated Multipoint (CoMP) transmission and reception has been suggested as a key enabling technology of future cellular systems. To understand different CoMP configurations and to facilitate the configuration selection (and thus determine channel state information (CSI) feedback and data sharing requirements), performance benchmarks are needed to show what performance gains are possible. A unified approach is also needed to enable the cluster of cooperating cells to systematically take care of the transceiver design. To address these needs, the generalized iterative approach (GIA) is proposed as a unified approach for the minimum mean square error (MMSE) transceiver design of general multiple-transmitter multiple-receiver multiple-input-multiple-output (MIMO) systems subject to general linear power constraints. Moreover, the optimum decoder covariance optimization approach is proposed for downlink systems. Their optimality and relationships are established and shown numerically. Five CoMP configurations (Joint Processing-Equivalent Uplink, Joint Processing-Equivalent Downlink, Joint Processing-Equivalent Single User, Noncoordinated Multipoint, and Coordinated Beamforming) are studied and compared numerically. Physical insights, performance benchmarks, and some guidelines for CoMP configuration selection are presented. 1. Introduction Though cellular has many challenges such as multipath fading, cell edge interference, and scarce spectrum, there is a demand for even better cellular performance than what is achieved today. In order to meet this demand, revolutionary ideas are needed. Coordinated Multipoint (CoMP) transmission and reception, a type of Network MIMO (multiple-input and multiple-output) in Long-Term Evolution-Advanced (LTE-A) [1], is one of those ideas and is a key enabling technology of future cellular systems. It, being a MIMO technique, actually exploits the multipath fading. Furthermore, it lowers the cell edge interference by having potential interfering cells cooperate. And lastly, its lowering of the interference allows for better spectrum reuse and, therefore, better use of the scarce spectrum. Since there are various levels of cell cooperation, there are various CoMP configurations [1¨C4]. As such, the following three categories of configurations are generally considered. The first category is Noncoordinated Multipoint (Non-CoMP) and does not use CoMP at all. In it, each base station (BS) communicates with its own user(s) and does so without cooperating with the other cells in data sharing or channel state information (CSI) %U http://www.hindawi.com/journals/isrn.communications.networking/2012/682090/