%0 Journal Article %T Fast Dynamic Control of Damaged Historical Buildings: A New Useful Approach for Structural Health Monitoring after an Earthquake %A Sergio Vincenzo Calcina %A Luca Piroddi %A Gaetano Ranieri %J ISRN Civil Engineering %D 2013 %R 10.1155/2013/527604 %X The structures damage conditions assessment requires numerous precautions to ensure the safety of people during site visits and inspections. Among several methods providing useful information about the conservation status of the structures, dynamic monitoring techniques are suitable to retrieve the global behavior of the buildings. The anomalous features diagnosis of the structural dynamic response is an index of alterations of the material state and, in the worst cases, is related to the presence of damaged structural elements. This paper proposes the use of remote control systems for the structural evaluation of the damage state of buildings and describes the results achieved in an interesting application: the experimental dynamic analysis carried out on the inaccessible damaged bell tower of the Church of Santi Giacomo and Filippo in Mirandola (Italy). The study is based on observations performed using the IBIS-S ground-based radar interferometer to remotely measure the displacements of several elements of the building above 0.01£żmm amplitude. This totally noninvasive and nondestructive approach has proved to be reliably implemented as a useful method to structural health monitoring procedures and especially for extensive and fast inspection analyses aiming at the first evaluation of the damage level and the soundness of slender buildings after earthquakes. 1. Introduction Structural damage identification is a fundamental element following an earthquake. A correct definition of the damage state of buildings allows us to establish technical procedures and operational standards for safeguarding the structures, aimed at restoring their original conditions. Structural Health Monitoring techniques (SHM) make it possible to deduce the presence of lesions and estimate the severity of the damage to the structures by measuring the mode of vibration of the buildings. This is possible because the dynamic response of structures is strongly influenced by the conservation state of materials and by structural lesions. The scientific literature includes many methods of structural dynamic response evaluation and algorithms for the extraction of main modal parameters [1, 2]. Several experimental configurations are classified in function of the number of measured output signals (number of sensors) and of the type of sources used to energize the structures. In this context, there are several experimental layouts to modal parameters identification. Specifically, it is possible to differentiate between forced vibration tests (i.e., using mechanical shaker or vibrodines), %U http://www.hindawi.com/journals/isrn.civil.engineering/2013/527604/