%0 Journal Article %T Proteomics Characterization of the Secretome from Rat Pancreatic Stellate Cells with ATP-Binding Cassette Transporters (ABCG2) and NCAM Phenotype %A Maria Lucas %A Eugenia Mato %A Silvia Barcel¨®-Batllori %A Ramon Gomis %A Anna Novials %J ISRN Cell Biology %D 2013 %R 10.1155/2013/828060 %X We have previously reported the identification of a pancreata mitoxantrone-resistant cell population which expressed the ABCG2 transporter with a pancreatic stellate cells phenotype (PaSC) and ability of secreting insulin after inducing their differentiation. The characterization of the secretome of this cell population by two-dimensional electrophoresis (2D) coupled with mass spectrometry MALDI-TOF was able to identify seventy-six protein spots involved in different cellular processes: development/differentiation, proteases, immune response, and other. Moreover, Ingenuity Pathway Analysis displayed several significant networks and TGF¦Â1 molecule was identified as a central node of one of them. The effect of this active molecule secreted in the conditioned medium was investigated in ductal cell line (ARIP). The results showed that the conditioned medium inhibited their proliferation without affecting their cell viability. Additionally, they showed an upregulation of PDX1 and downregulation of CK19. The rate of ARIP cell proliferation was recovered, but no effects on the gene expression were observed after using TGF¦Â1-neutralising antibody. Proteins associated with cell growth, development and differentiation such as PEDF, LIF, and Wnt5b, identified in the secretome, could be involved in the observed transcription changes. These finding may suggest a new paracrine action of PaSCs involved in the proliferation and differentiation pathways not yet identified. 1. Introduction Pancreatic stellate cells (PaSC) were first described in 1998 and constitute nearly 4% of total pancreatic cells [1]. PaSCs are located in the periacinar space and can also be found in the periductal regions of the pancreas [2]. These cells have long cytoplasmatic processes resulting in a typical ¡°stellate¡± appearance. They share morphological and functional characteristics with the hepatic stellate cells and can present different phenotypes: quiescent cells, with capacity to storage vitamin A, and active cells, also so-called myofibroblast-like cells. The active phenotype expresses alpha actin (aSMA), desmin, glial fibrillary acidic protein (GFAP), ABCG2, and NCAM. These latter two markers are expressed in rat and human hepatic stellate cells, and several studies demonstrate that NCAM is involved in the transformation of these cells in myofibroblasts and modulates the adhesive property of cell adhesion [3], and ABCG2 transporter is associated with cell viability and/or activation [4]. They can be useful to select PaSC with a myofibroblast phenotype. Moreover, several studies %U http://www.hindawi.com/journals/isrn.cell.biology/2013/828060/