%0 Journal Article %T Yield and Properties of Ethanol Biofuel Produced from Different Whole Cassava Flours %A F. T. Ademiluyi %A H. D. Mepba %J ISRN Biotechnology %D 2013 %R 10.5402/2013/916481 %X The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash point of ethanol produced differ slightly for different cultivars, while the yield of ethanol and electrical conductivity of ethanol from the different cassava cultivars varies significantly. The variation in mineral composition of the different whole cassava flours could also lead to variation in the electrical conductivity of ethanol produced from the different cassava cultivars. The differences in ethanol yield are attributed to differences in starch content, protein content, and dry matter of cassava cultivars. High yield of ethanol from whole cassava flour is best produced from cultivars with high starch content, low protein content, and low fiber. 1. Introduction Ethanol is used extensively as a solvent in the manufacture of varnishes and perfumes; as a preservative for biological specimens; in the preparation of essences and flavorings; in many medicines and drugs; as a disinfectant and in tinctures (e.g., tincture of iodine); as a fuel and gasoline additive (Columbia Encyclopedia). Ethanol has been produced from different sources in the past. The generally accepted sources of raw material for alcohol production from starch are cereal grains such as corn, wheat, rye, barley, milo (sorghum grains), rice, potatoes, apple wine, and others [1, 2]. The use of nonfood sources such as microalgae to produce ethanol gave low yield of ethanol when compared with food crops like sugar cane and cassava. The highest ethanol production using spirogyra algae fermented with Z. mobilis was 9.70% ethanol (v/v) with addition of ¦Á-amylase enzyme at 0.09 grams for 96 hours, while using spirogyra algae fermented with S. cerevisiae the highest ethanol production was 4.42% ethanol (v/v) with addition of ¦Á-amylase [3]. Therefore, Cassava starch is still a promising renewable resource in centuries to come as global reserves dwindles. In Nigeria, the national goal is to have a 10% blend that requires 1.27 billion litres of ethanol per year. Brazil, the world leading producer of this substitute, makes more than 120 million liters per year of ethanol from sugar cane and cassava. Promising %U http://www.hindawi.com/journals/isrn.biotechnology/2013/916481/