%0 Journal Article %T Pharmaceutical Applications of Chemometric Techniques %A Inderbir Singh %A Prateek Juneja %A Birender Kaur %A Pradeep Kumar %J ISRN Analytical Chemistry %D 2013 %R 10.1155/2013/795178 %X Chemometrics involves application of various statistical methods for drawing vital information from various manufacturing-related processes. Multiway chemometric models like parallel factor analysis (PARAFAC), Tucker-3, N-partial least square (N-PLS), and bilinear models like principle component regression (PCR) and partial least squares (PLS) have been discussed in the paper. Chemometric approaches can be used to analyze the data obtained from various instruments including near infrared (NIR), attenuated total reflectance Fourier transform infrared (ATR-FTIR), high-performance liquid chromatography (HPLC), and terahertz pulse spectroscopy. The technique has been used in the quality assurance and quality control of pharmaceutical solid dosage forms. Moreover, application of chemometric methods in the evaluation of properties of pharmaceutical powders and tablet parametric tests has also been discussed in the review. It has been suggested as a useful method for the real-time in-process testing and is a valuable process analytical tool. 1. Introduction Chemometrics is a branch of science that derives data by the application of mathematical and statistical methods, for the extraction of useful information from physical and chemical phenomena involved in a manufacturing process. Chemometrics is used for multivariate data collection and analysis protocols, calibration, process modelling, pattern recognition and classification, signal correction and compression, and statistical process control. Both predictive and descriptive issues of life sciences could be solved by chemometrics. The predictive issues include numerous system properties that are utilized in an elaborated model with the intent of predicting the target properties, desired features, or behaviour of interest. The descriptive issues include properties of the investigated systems that are modelled in order to learn the underlying relationships and the system structure, which leads to the model identification, composition, and understanding. There is a vast volume of measurement data generated by the latest automated laboratory instruments in biological/medical research which are difficult to absorb and interpret. The use of chemometrics helps to perform such a challenging task of consuming the data and reveal the useful information. Some applications of chemometrics in pharmacy and medical sciences are depicted in Figure 1. Figure 1: Applications of chemometrics in pharmacy and medical sciences. Chemometrics and its methods are versatile and there is a high level of abstraction as it characterises %U http://www.hindawi.com/journals/isrn.analytical.chemistry/2013/795178/