%0 Journal Article %T Dissipation and Residues of Mandipropamid in Grape Using QuEChERS Methodology and HPLC-DAD %A Farag M. Malhat %A Hend A. Mahmoud %J ISRN Analytical Chemistry %D 2012 %R 10.5402/2012/267596 %X The HPLC method for determination of mandipropamid residues and its dissipation in grape was investigated. The mean recoveries of the analytical method were 98¨C102%. The samples were collected within 2 weeks after pesticide application, and the pesticide residues were extracted by an optimized QuEChERS method. Mandipropamid dissipated rapidly with half-life 2.20 days in grape. According to maximum residue limit (MRL) the preharvest interval (PHI) of mandipropamid on grape was 4 days, after the last treatment. 1. Introduction Pesticides will continue to be used in the production of food and fiber especially in the developing countries. Drastic reductions of pesticide usage will increase the production cost and lower the quality of the agriculture productivity. It is well recognized that there are risks attached to the consumption of pesticide-treated crops because of the presence of residues on them [1, 2]. Therefore, the rational recommendation of a pesticide requires that it must not only provide an effective control of pests but at the same time its residues on the commodity must also be toxicologically acceptable. The dissipation of the pesticides after their application depends on several factors, such as the applied dose and formulation [3], application parameters, the number of applications, climatic conditions, the species cultivated, physical phenomena, and chemical degradation [4¨C6]. Of late several new molecules have been developed as pesticides, which can be degraded easily in the environment and are less harmful for human beings. Mandipropamid [4-chloro-N-[2-[3-methoxy-4-(2-propynyloxy)phenyl]ethyl] a-(2 propynyloxyl)-benzeneacetamide] (Figure 1) is a new fungicide in the mandelamide class developed by Syngenta Crop Protection, Inc. for the control of foliar oomycete pathogens in a range of crops including Plasmopara viticola in grapes, Phytophthora infestans in potatoes and tomatoes, and Pseudoperonospora cubensis in cucurbits. Mandipropamid is also proposed for uses on leafy vegetables to control downy mildew (Bremia lactucae) and blue mold (Peronospora effuse). At present, studies of mandipropamid focus on chemical synthesis, toxicology, mode of action, and efficacy. In contrast, papers on analytical methods for residues of mandipropamid in food stuffs seem to be rare. The QuEChERS method (named for quick, easy, cheep, effective, rugged, and safe) is well known for its applicability in simultaneous analysis of a large number of pesticides residues in variety of food matrices [7]. This method and several modified versions have been lately %U http://www.hindawi.com/journals/isrn.analytical.chemistry/2012/267596/