%0 Journal Article %T Low Complexity Submatrix Divided MMSE Sparse-SQRD Detection for MIMO-OFDM with ESPAR Antenna Receiver %A Diego Javier Reinoso Chisaguano %A Minoru Okada %J VLSI Design %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/206909 %X Multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) with an electronically steerable passive array radiator (ESPAR) antenna receiver can improve the bit error rate performance and obtains additional diversity gain without increasing the number of Radio Frequency (RF) front-end circuits. However, due to the large size of the channel matrix, the computational cost required for the detection process using Vertical-Bell Laboratories Layered Space-Time (V-BLAST) detection is too high to be implemented. Using the minimum mean square error sparse-sorted QR decomposition (MMSE sparse-SQRD) algorithm for the detection process the average computational cost can be considerably reduced but is still higher compared with a conventional MIMOOFDM system without ESPAR antenna receiver. In this paper, we propose to use a low complexity submatrix divided MMSE sparse-SQRD algorithm for the detection process of MIMOOFDM with ESPAR antenna receiver. The computational cost analysis and simulation results show that on average the proposed scheme can further reduce the computational cost and achieve a complexity comparable to the conventional MIMO-OFDM detection schemes. 1. Introduction In multipath fading channels, multiple input multiple output (MIMO) antenna systems can achieve a great increase in the channel capacity [1]. MIMO-OFDM combines the advantages of the MIMO systems with orthogonal frequency division multiplexing (OFDM) modulation, achieving a good performance for frequency selective fading channels. Due to these advantages, MIMO-OFDM allows high data rates in wireless communications systems. It is used in the wireless local area network (WLAN) standard IEEE 802.11n [2] and is also considered for the next-generation systems. One of the limitations of MIMO-OFDM is that it requires one radio frequency (RF) front-end circuit for every receiver and transmitter antenna. Comparing MIMO-OFDM 2Tx-2Rx with MIMO-OFDM 2Tx-4Rx, MIMO-OFDM 2 4 can achieve better diversity gain and bit error rate performance but requires more RF front-end circuits, A/D converters, and FFT blocks for every additional branch. In [3, 4] a MIMO-OFDM 2 2 scheme with electronically steerable passive array radiator (ESPAR) antenna receiver diversity has been proposed. It utilizes for every receiver a 2-element ESPAR antenna whose directivity is changed at the same frequency of the OFDM symbol rate. Compared to the conventional MIMO-OFDM 2 2 systems, this scheme gives additional diversity gain and improves the bit error rate performance without increasing the number of %U http://www.hindawi.com/journals/vlsi/2013/206909/