%0 Journal Article %T Increased Cell Fusion in Cerebral Cortex May Contribute to Poststroke Regeneration %A Alexander Paltsyn %A Svetlana Komissarova %A Ivan Dubrovin %A Aslan Kubatiev %J Stroke Research and Treatment %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/869327 %X In this study, we used a model of a hemorrhagic stroke in a motor zone of the cortex in rats at the age of 3 months The report shows that cortical neurons can fuse with oligodendrocytes. In formed binuclear cells, the nucleus of an oligodendrocyte undergoes neuron specific reprogramming. It can be confirmed by changes in chromatin structure and in size of the second nucleus, by expression of specific neuronal markers and increasing total transcription rate. The nucleus of an oligodendrocyte likely transforms into a second neuronal nucleus. The number of binuclear neurons was validated with quantitative analysis. Fusion of neurons with oligodendrocytes might be a regenerative process in general and specifically following a stroke. The appearance of additional neuronal nuclei increases the functional outcome of the population of neurons. Participation of a certain number of binuclear cells in neuronal function might compensate for a functional deficit that arises from the death of a subset of neurons. After a stroke, the number of binuclear neurons increased in cortex around the lesion zone. In this case, the rate of recovery of stroke-damaged locomotor behavior also increased, which indicates the regenerative role of fusion. 1. Introduction Protection, rehabilitation, and stroke outcome are determined by the extent of the preserved neuronal tissue. Thus, the maintenance and regeneration of stroke-injured neurons is a prominent topic on which there are many publications, all of which represent neuronal regeneration exclusively as a result of neurogenesis. This tendency can be justified only in one case, when a stroke occurs in the dentate gyrus (fascia dentata hippocampus) or in the olfactory bulb. These two zones are reasonably considered neurogenic because they are sites of the replacement of granular neurons. Granular neurons are formed in two other neurogenic zones: the subgranular layer of the dentate gyrus [1¨C5] and the subventricular layer of the cerebral ventricles [6¨C8]. Neuroblasts migrate from these zones to the granular layer of the dentate gyrus [9¨C11] and to the olfactory bulbs [8, 12], where they differentiate into granular neurons. Reports of neurogenesis in other brain regions, as in the review of Gould [13], contradict other experiments [14¨C17]. Therefore, scientific consensus purports that, in other brain regions, neurogenesis does not occur. According to one hypothesis, neurogenesis does not normally occur in the cortex but appears after stroke [18, 19]. However, some publications do not confirm this point of view [20]. These issues %U http://www.hindawi.com/journals/srt/2013/869327/