%0 Journal Article %T The Control of Mesenchymal Stromal Cell Osteogenic Differentiation through Modified Surfaces %A Niall Logan %A Peter Brett %J Stem Cells International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/361637 %X Stem cells continue to receive widespread attention due to their potential to revolutionise treatments in the fields of both tissue engineering and regenerative medicine. Adult stem cells, specifically mesenchymal stromal cells (MSCs), play a vital role in the natural events surrounding bone healing and osseointegration through being stimulated to differentiate along their osteogenic lineage and in doing so, they form new cortical and trabecular bone tissue. Understanding how to control, manipulate, and enhance the intrinsic healing events modulated through osteogenic differentiation of MSCs by the use of modified surfaces and biomaterials could potentially advance the fields of both orthopaedics and dentistry. This could be by either using surface modification to generate greater implant stability and more rapid healing following implantation or the stimulation of MSCs ex vivo for reimplantation. This review aims to gather publications targeted at promoting, enhancing, and controlling the osteogenic differentiation of MSCs through biomaterials, nanotopographies, and modified surfaces for use in implant procedures. 1. Introduction Biomaterials have advanced significantly in recent years, although with an aging global population, what was once deemed to be an acceptable longevity for an implant is no longer so, driving the development of improved biomaterials that have superior performance and greater longevity. One area where this effect is very obvious is in orthopaedic arthroplasty. It is estimated that by 2030, there will be a 174% increase in the need for total hip replacements (THR) accompanied by a 674% rise in total knee replacements (TKR) [1]. Over the same time period, the need for revision surgery, to surgically replace or repair a failing prosthetic joint, is also set to increase dramatically. To help reduce the need for revision surgery, suitable biomaterials must be developed for these applications based on their mechanical and biocompatible properties [2]. Ideally for orthopaedic implants, the material must be mechanically strong enough to tolerate the load of the joint whilst also having a Young¡¯s modulus that is suitable to transfer load into the surrounding tissues. It is also important for the implant material to be bioinert to prevent any inflammatory response, although bioactive materials are currently the implant material of choice [3], as they can promote positive biological responses such as osseointegration. Osseointegration is important for bone healing and is the formation of a direct interface between an implant and bone %U http://www.hindawi.com/journals/sci/2013/361637/