%0 Journal Article %T Intrinsic Ability of Adult Stem Cell in Skeletal Muscle: An Effective and Replenishable Resource to the Establishment of Pluripotent Stem Cells %A Shin Fujimaki %A Masanao Machida %A Ryo Hidaka %A Makoto Asashima %A Tohru Takemasa %A Tomoko Kuwabara %J Stem Cells International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/420164 %X Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications. 1. Introduction Stem cells are primordial cells common to all multicellular organisms and retain two distinctive properties: (1) the ability to self-renew through mitotic cell division and thus remain in an undifferentiated state and (2) the ability to differentiate into specific cell types [1, 2]. When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a blood cell, or a brain neuronal cell. Recent studies in the field of therapeutics suggest that stem cells will become a major focus in organ transplantation and replacement of lost tissue [3]. Stem cells can be categorized as totipotent, pluripotent, and multipotent, depending upon their differentiation potential [4, 5]. Totipotent stem cells arise through the fusion of an egg with a sperm and differentiate into embryonic and extraembryonic cell types. Pluripotent cells are the descendants of totipotent cells and can give rise to most of the tissues necessary for embryonic development. Embryonic stem (ES) cells are pluripotent, meaning that they can %U http://www.hindawi.com/journals/sci/2013/420164/