%0 Journal Article %T Multiscale Permutation Entropy Based Rolling Bearing Fault Diagnosis %A Jinde Zheng %A Junsheng Cheng %A Yu Yang %J Shock and Vibration %D 2014 %R 10.1155/2014/154291 %X A new rolling bearing fault diagnosis approach based on multiscale permutation entropy (MPE), Laplacian score (LS), and support vector machines (SVMs) is proposed in this paper. Permutation entropy (PE) was recently proposed and defined to measure the randomicity and detect dynamical changes of time series. However, for the complexity of mechanical systems, the randomicity and dynamic changes of the vibration signal will exist in different scales. Thus, the definition of MPE is introduced and employed to extract the nonlinear fault characteristics from the bearing vibration signal in different scales. Besides, the SVM is utilized to accomplish the fault feature classification to fulfill diagnostic procedure automatically. Meanwhile, in order to avoid a high dimension of features, the Laplacian score (LS) is used to refine the feature vector by ranking the features according to their importance and correlations with the main fault information. Finally, the rolling bearing fault diagnosis method based on MPE, LS, and SVM is proposed and applied to the experimental data. The experimental data analysis results indicate that the proposed method could identify the fault categories effectively. 1. Introduction The vibration signals of mechanical systems, especially for ones with fault, often show mutation, nonlinearity, and nonstationarity because of the strike, velocity chopping, structure transmutation, loading, and friction. Hence, it is very crucial for mechanical fault diagnosis to extract the fault feature information from the nonlinear and nonstationary signal. A primary method for dealing with the nonlinear and nonstationary signal is time-frequency analysis [1], which has been applied to the mechanical fault diagnosis field widely for its ability to provide local information both in time and frequency domains of vibration signals [2]. However, the time-frequency analysis method, such as wavelet transform or Hilbert-Huang transform [3, 4], which decomposes the vibration signal into several stationary monocomponent signals, cannot reflect the subtle dynamic changes of vibration signal effectively and, therefore, inevitably will have some limitations [5]. With the development of nonlinear dynamic theories, especially in recent years, a number of nonlinear parameters and methods, such as chaos theory, fractal dimension, and information entropy, have been applied to machine condition monitoring and fault diagnosis. For instance, Logan and Mathew elaborated the application of the correlation dimension to vibration fault diagnosis of rolling element bearing %U http://www.hindawi.com/journals/sv/2014/154291/