%0 Journal Article %T Advances in Robotic-Assisted Radical Prostatectomy over Time %A Emma F. P. Jacobs %A Ronald Boris %A Timothy A. Masterson %J Prostate Cancer %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/902686 %X Since the introduction of robot-assisted radical prostatectomy (RALP), robotics has become increasingly more commonplace in the armamentarium of the urologic surgeon. Robotic utilization has exploded across surgical disciplines well beyond the fields of urology and prostate surgery. The literature detailing technical steps, comparison of large surgical series, and even robotically focused randomized control trials are available for review. RALP, the first robot-assisted surgical procedure to achieve widespread use, has recently become the primary approach for the surgical management of localized prostate cancer. As a result, surgeons are constantly trying to refine and improve upon current technical aspects of the operation. Recent areas of published modifications include bladder neck anastomosis and reconstruction, bladder drainage, nerve sparing approaches and techniques, and perioperative and postoperative management including penile rehabilitation. In this review, we summarize recent advances in perioperative management and surgical technique for RALP. 1. Introduction Prostate cancer is the most common visceral malignancy diagnosed in American men. The American Cancer Society estimates 241,740 new diagnoses of prostate cancer [1]. It remains the second most common cause of cancer death in American men [1]. Although controversies remain over ideal diagnostic and treatment strategies for prostate cancer, complete removal of the prostate remains the gold standard in the surgical management of localized disease. Hugh Hampton Young first described the perineal prostatectomy over 100 years ago in 1905 [2]. Subsequently, the first retropubic radical prostatectomy (RRP) was performed by Millin in 1947 [3]. Anatomic studies in the 1970s and early 1980s led to improved appreciation of periprostatic features (dorsal venous complex, endopelvic fascia, autonomic innervation, and striated sphincter) to decrease morbidity of surgery and improve overall outcomes [4, 5]. More recently, in 1997, Schuessler et al. described the first LRP reporting the feasibility of technique despite its association with long operative times [6]. Since that time, numerous European and US centers continued to improve and refine technical aspects of the laparoscopic approach [7, 8]. Several robotic systems were introduced around the turn of the century. The da Vinci system (Intuitive Surgical Inc, CA, USA) was first introduced in 1999. Following a merger with Computer Motion Inc. (AESOP and ZEUS systems) in 2003, Intuitive Surgical has become the sole producer of robotic surgical %U http://www.hindawi.com/journals/pc/2013/902686/