%0 Journal Article %T Analysis of Serum and Urinal Copper and Zinc in Chinese Northeast Population with the Prediabetes or Diabetes with and without Complications %A Jiancheng Xu %A Qi Zhou %A Gilbert Liu %A Yi Tan %A Lu Cai %J Oxidative Medicine and Cellular Longevity %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/635214 %X This study investigated the association of copper and zinc levels in the serum or urine of patients living in northeast China, with either prediabetes or diabetes. From January 2010 to October 2011, patients with type 1 diabetes (T1D, ), type 2 diabetes (T2D, ), impaired fasting glucose (IFG, ) or impaired glucose tolerance (IGT, ), and age/gender matched controls ( ) were enrolled. In the T2D group, there were 24 patients with nephropathy, 34 with retinopathy, and 50 with peripheral neuropathy. Serum copper levels were significantly higher in IFG, IGT, and T2D groups. Serum zinc level was dramatically lower, and urinary zinc level was significantly higher in both T1D and T2D subjects compared with controls. The serum zinc/copper ratio was significantly lower in all the patients with IFG, ITG, T1D, and T2D. The serum copper level was positively associated with HbA1c in T2D subjects. Simvastatin treatment in T2D patients had no significant effect on serum and urinary copper and zinc. These results suggest the need for further studies of the potential impact of the imbalanced serum copper and zinc levels on metabolic syndrome, diabetes, and diabetic complications. 1. Introduction Diabetes has become a pandemic disease. According to the International Diabetes Federation, diabetes affects at least 285 million people worldwide, and this number is expected to reach 438 million by the year 2030 [1]. The number of adults with impaired glucose tolerance will rise from 344 million in 2010 to an estimated 472 million by 2030 [1]. The prevalence of diabetes in China has increased dramatically in recent decades. In 1980, less than 1% of Chinese adults had this disease. By 2008, the prevalence had reached nearly 10% [1, 2]. It was estimated that more than 92 million Chinese adults had diabetes and another 148 million were prediabetic [2]. The threatening effect of diabetes for these patients is chronic hyperglycemia induced microvascular complications such as diabetic retinopathy, neuropathy, and nephropathy [2]. Excessive caloric intake and high-energy diet quality are major driving forces behind escalating diabetes and the appearance of epidemics worldwide [1, 3]. As an essential component of the daily diet intake, trace elements are also important for the pathogenesis of diabetes and diabetic complications. Disturbances in trace element status and increased oxidative stress in diabetes may contribute to insulin resistance and the development of diabetes and diabetic complications [4, 5]. On the other hand, progression of diabetes may also lead to perturbation in %U http://www.hindawi.com/journals/omcl/2013/635214/