%0 Journal Article %T DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications %A Emilia Sbardella %A Francesca Tona %A Nikolaos Petsas %A Patrizia Pantano %J Multiple Sclerosis International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/671730 %X Diffusion tensor imaging (DTI) is an effective means of quantifying parameters of demyelination and axonal loss. The application of DTI in Multiple Sclerosis (MS) has yielded noteworthy results. DTI abnormalities, which are already detectable in patients with clinically isolated syndrome (CIS), become more pronounced as disease duration and neurological impairment increase. The assessment of the microstructural alterations of white and grey matter in MS may shed light on mechanisms responsible for irreversible disability accumulation. In this paper, we examine the DTI analysis methods, the results obtained in the various tissues of the central nervous system, and correlations with clinical features and other MRI parameters. The adoption of DTI metrics to assess the outcome of prognostic measures may represent an extremely important step forward in the MS research field. 1. Introduction In multiple sclerosis (MS) research, nonconventional magnetic resonance imaging (MRI) techniques have demonstrated a high degree of specificity and sensitivity in detecting pathological tissue damage [1]. These techniques include diffusion-weighted imaging, which plays an important role in highlighting brain microstructural damage not visible when conventional sequences are used. Diffusion imaging principles are based on the measurement of motion of water molecules within tissues [2]. Free water usually moves equally in all directions in an isotropic fashion; when, however, water is restricted inside or by tissues, preferential directions are taken and movement consequently becomes anisotropic. Therefore, water mobility in the brain is markedly reduced in compact tissue, such as white matter (WM), is reduced to a lesser extent in the grey matter (GM), and is almost free in the cerebrospinal fluid (CSF). Pathological processes that alter the normal brain structure may affect water motion, with effects on the resulting diffusion indexes. Diffusion images can be acquired from a minimum of three gradient directions, which yield two different kinds of sequences: diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI), respectively. The diffusion tensor is a matrix acquired from at least 6 gradient directions that characterizes three-dimensional water movement. It can be represented as an ellipsoid whose components are 3 main axes [3] (Figure 1): the longest axis stands for the primary eigenvector ( ) and reflects diffusion parallel to the fibers, or axial diffusivity (AD); the two shorter axes represent the second ( ) and third ( ) eigenvectors and are averaged to %U http://www.hindawi.com/journals/msi/2013/671730/