%0 Journal Article %T The Clinical Relevance of Force Platform Measures in Multiple Sclerosis: A Review %A Luca Prosperini %A Carlo Pozzilli %J Multiple Sclerosis International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/756564 %X Balance impairment and falls are frequent in patients with multiple sclerosis (PwMS), and they may occur even at the earliest stage of the disease and in minimally impaired patients. The introduction of computer-based force platform measures (i.e., static and dynamic posturography) has provided an objective and sensitive tool to document both deficits and improvements in balance. By using more challenging test conditions, force platform measures can also reveal subtle balance disorders undetectable by common clinical scales. Furthermore, posturographic techniques may also allow to reliably identify PwMS who are at risk of accidental falls. Although force platform measures offer several theoretical advantages, only few studies extensively investigated their role in better managing PwMS. Standardised procedures, as well as clinical relevance of changes detected by static or dynamic posturography, are still lacking. In this review, we summarized studies which investigated balance deficit by means of force platform measures, focusing on their ability in detecting patients at high risk of falls and in estimating rehabilitation-induced changes, highlighting the pros and the cons with respect to clinical scales. 1. Introduction Balance can be defined as the ability to maintain the body¡¯s centre of gravity (COG) within the base of support with minimal sway [1]. The control of human balance is a complex task which is assured by uninterrupted flow of afferent signals reaching the central nervous system (CNS) from the muscle, tendon and joint proprioceptors, skin exteroceptors, and vestibular and visual inputs [2]. The deficient integration of these pathways, due to the widespread and variable distribution of CNS damage in patients with multiple sclerosis (PwMS), can affect postural response and the ability to maintain adequate balance [3¨C5]. Balance impairment is frequently observed in PwMS, and it is among the most disabling symptoms [6]. A wide-base gait with worsening balance when changing direction has been often described in PwMS [7]. Fatigue, muscle weakness, and spasticity further contribute to compromise adequate balance and predispose them to accidental falls [8¨C11]. Fall tendency may occur early in the course of the disease, even before walking and balance impairment becomes clinically evident [12]. The incidence of accidental falls (i.e., an unexpected contact of any part of the body with the ground) in PwMS has been reported from 30% to 63% in a period variable from 1 to 12 months, according to different studies [13¨C27]. Recently, a large survey on %U http://www.hindawi.com/journals/msi/2013/756564/