%0 Journal Article %T Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance %A Alberto Ch¨¢vez-Arag¨®n %A Rizwan Macknojia %A Pierre Payeur %A Robert Lagani¨¨re %J Journal of Sensors %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/832963 %X This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation. 1. Introduction Robot manipulation and navigation require efficient methods for representing and interpreting the surrounding environment. Industrial robots, which work in controlled environments, are typically designed to perform only repetitive and preprogrammed tasks. However, robots working in dynamic environments demand reliable methods to interpret their surroundings and are submitted to severe time constraints. Most existing solutions for robotic environment representation and interpretation make use of high-cost 3D profiling cameras, scanners, sonars, or combinations of them, which often result in lengthy acquisition and slow processing of massive amounts of information. The extreme acquisition speed of the Kinect¡¯s technology meets requirements for rapidly acquiring models over large volumes, such as that of automotive vehicles. The performance, affordability, and the growing adoption of the Kinect for robotic applications supported the selection of the sensor to develop the robotic inspection station operating under multisensory visual guidance. The method presented in this work uses a set of Kinect depth sensors properly calibrated to collect visual information as well as 3D points from different regions over vehicle bodyworks. A dedicated calibration methodology is presented to achieve accurate alignment between the respective point clouds and textured images acquired %U http://www.hindawi.com/journals/js/2013/832963/