%0 Journal Article %T Routing Protocols for Wireless Multimedia Sensor Network: A Survey %A Mohammed Abazeed %A Norshiela Faisal %A Suleiman Zubair %A Adel Ali %J Journal of Sensors %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/469824 %X Multimedia applications have become an essential part of our daily lives, and their use is flourishing day by day. The area of wireless sensor network is not an exception where the multimedia sensors are attracting the attention of the researchers increasingly, and it has shifted the focus from traditional scalar sensors to sensors equipped with multimedia devices. The multimedia sensors have the ability to capture video, image, audio, and scalar sensor data and deliver the multimedia content through sensors network. Due to the resource constraints nature of WSN introducing multimedia will add more challenges, so the protocols designed for multimedia wireless sensor network should be aware of the resource constraints nature of WSN and multimedia transmission requirement. This paper discusses the design challenges of routing protocols proposed for WMSN. A survey and comprehensive discussion are given for proposed protocols of WMSN followed by their limitations and features. 1. Introduction Wireless multimedia sensor networks (WMSNs) are a newly developed type of sensor network which has the sensor nodes equipped with cameras, microphones, and other sensors producing multimedia data content. The development towards the wireless multimedia sensor network has been the result of progress in the CMOS technology which leads to development of single chip camera modules that could be easily integrated with senor nodes. This integration between multimedia sources and cheap communication devices motivates the researches in wireless sensor network. WMSN enhances existing WSN applications and enables a new large range of applications, like multimedia surveillance, traffic management, automated assistance, environmental monitoring, and industrial process control. WMSNs have more additional features and requirements than WSN, such as high bandwidth demand, bounded delay, acceptable jitter, and low packet loss ratio. These characteristics impose more resource constraints that involve energy consumption, memory, buffer size, bandwidth, and processing capabilities [1]. Meeting the quality of service requirements for multimedia data within aforementioned constraints is a real challenge. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and test beds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. Routing protocols designed for WSMN must take into consideration %U http://www.hindawi.com/journals/js/2013/469824/