%0 Journal Article %T FAME Storage Time in an Optimized Natural Antioxidant Mixture %A Rodolfo Lopes Coppo %A Dion¨ªsio Borsato %A Jaqueline La¨ªs Pereira %A H¨¢gata Cremasco da Silva %J Journal of Renewable Energy %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/497530 %X The study of B100 biodiesel oxidation stability, and its conservation, is extremely important to control its quality, especially regarding storage. Many spices have shown antioxidant effect and are the targets of study. Knowing the oxidation process in greater detail allows a reliable storage period to be stipulated for the biodiesel without its degradation until the time of use. Results have shown that according to the accelerated stove method, the optimal mixture, composed of 100% of oregano extract, can confer a 535-day shelf life to biodiesel without evident oxidation. According to the results obtained by the Rancimat method, the ideal mixture consists of 100% rosemary, resulting in 483 days of storage. The application of the process variable showed that the accelerated stove method was more suitable to determine oxidative stability of biodiesel. 1. Introduction For many decades, fossil fuels have supplied the energy demand but it is known that these fuels release carbon dioxide gas, the main cause of the greenhouse effect, and sulphur oxides, associated to the acid rain phenomenon. These negative contributions to the environment have triggered the search for sources of clean and renewable energy and the use of biofuels has presented a viable alternative to solve these problems [1]. The use of biomass, represented mainly by vegetable oils, is a good strategy both in economic terms and environmental preservation [2]. In this context, biodiesel can be highlighted. It is defined as mono-alkyl ester from fatty acids produced by the reaction of vegetable oils or animal fat with alcohol, usually methanol, in the presence of a catalyst, normally a strong base such as sodium or potassium hydroxide, or even an acid, and this reaction is known as transesterification [3, 4]. The high compatibility of biodiesel with petroleum diesel characterizes it as an good alternative capable of supplying most of the existing diesel fleet without great adaptations. It is also biodegradable and renewable, has a lubricant capacity in the pure form, and is competitive with diesel in terms of fuel properties [1]. However, unlike fossil fuels that are relatively inert and maintain their essential characteristics with little alteration during storage, biodiesel degrades with time and can be altered due to the action of air, light, temperature, and moisture. Contact with contaminants, both inorganic and microbial nature, can also tend to introduce variations in product quality, and oxidation resulting from its exposure to atmospheric air is one of the main degradation problems to %U http://www.hindawi.com/journals/jre/2013/497530/