%0 Journal Article %T Quality Assessment of Transient Response Analysis Method for Detecting Radiation-Induced Faults %A Jos¨¦ Peralta %A Gabriela Peretti %A Eduardo Romero %A Gustavo Demarco %A Carlos Marqu¨¦s %J Journal of Quality and Reliability Engineering %D 2011 %R 10.1155/2011/396297 %X We evaluate the ability of transient response analysis method (TRAM), a simple test strategy proposed for filters, to detect deviations in circuit specifications beyond established limits. Particularly, we focus our attention on deviations produced by displacement damage in integrated resistors. This damage is produced by the impact of high-energy particles like the encountered in space environments. For this purpose, we formulate a simple deviation-fault model that takes into consideration the degradation addressed. Additionally, more transient response parameters are taken into account in order to improve the fault coverage. We adopt for our evaluations two typical second-order filters as cases of study. For these filters, the simulation results show that TRAM reaches excellent fault coverage for both filters, suggesting that its use in space applications is encouraging. 1. Introduction In space applications, the systems operate in a harsh environment without easy access for maintenance. For this reason, it is desirable to employ circuits with self-testing functionalities that can be part of a self-repair or fault tolerance strategies. The self-test determines if a given system/subsystem suffered degradation in its functional parameters that can compromise the safe operation of the whole application. For analog circuits, a common approach for test is checking the functional specifications of the circuit under test. In this sense, a circuit is accepted as fault-free if all specifications are complied. However, functional test imposes strict demands on test circuitry and test time that has motivated the proposal of alternative strategies [1, 2]. Transient response analysis method (TRAM) is a simple test strategy proposed for filters implemented as a cascade of second-order sections [3, 4]. The conceptual simplicity of TRAM and the relatively simple measurements required make this test scheme appealing for a wide range of applications. In this method, the filter is partitioned into second-order sections. Each section is excited with a step, ramp or parabola input signal. It is assumed that a faulty filter is detected by observing changes in one or more parameters of the section transient response. The evaluation of TRAM ability for detecting faults in production environments using parametric fault models is presented in [5, 6]. In order to explore the performance of TRAM in space applications it is necessary to employ different fault models. This fault model should represent a specific damage but keep reasonable the computational cost of fault %U http://www.hindawi.com/journals/jqre/2011/396297/