%0 Journal Article %T Fuzzy RAM Analysis of the Screening Unit in a Paper Industry by Utilizing Uncertain Data %A Harish Garg %A Monica Rani %A S. P. Sharma %J Journal of Quality and Reliability Engineering %D 2012 %R 10.1155/2012/203842 %X Reliability, availability, and maintainability (RAM) analysis has helped to identify the critical and sensitive subsystems in the production systems that have a major effect on system performance. But the collected or available data, reflecting the system failure and repair patterns, are vague, uncertain, and imprecise due to various practical constraints. Under these circumstances it is difficult, if not possible, to analyze the system performance up to desired degree of accuracy. For this, Artificial Bee Colony based Lambda-Tau (ABCBLT) technique has been used for computing the RAM parameters by utilizing uncertain data up to a desired degree of accuracy. Results obtained are compared with the existing Fuzzy Lambda-Tau results and we conclude that proposed results have a less range of uncertainties. Also ranking the subcomponents for improving the performance of the system has been done using RAM-Index. The approach has been illustrated through analyzing the performance of the screening unit of a paper industry. 1. Introduction In any production plant, systems are expected to be operational and available for the maximum possible time so as to maximize the overall production and hence profit. That is each component/system of the entire production plant will run failure free for enhancing the production as well as productivity of the plant and furnish their excellent performance. However, failures are inevitable; a product will fail sooner or later. These failures may be the result of human error, poor maintenance, or inadequate testing and inspection. Therefore, the systems and components undergo several failure-repair cycles that include logistic delays while performing repair leads to the degradation of systems¡¯ overall performance [1]. System performance depends on reliability and availability of the system/components, operating environment, maintenance efficiency, operation process and technical expertise of operators, and so forth. To improve the system reliability and availability, implementation of appropriate maintenance strategies play an important role. High performance of these units can be achieved with highly reliable subunits and perfect maintenance. To this effect the knowledge of behavior of system, their component(s) is customary in order to plan and adapt suitable maintenance strategies. Thus, maintainability is also to be a key index to enhance the performance of these systems [2, 3]. On the other hand availability of the system can be improved by improvement in its reliability and maintainability. To maintain the availability of %U http://www.hindawi.com/journals/jqre/2012/203842/