%0 Journal Article %T A Preliminary Investigation of Ductility-Enhancement Mechanism through In Situ Nanofibrillation in Thermoplastic Matrix Composites %A Bhaskar Patham %A M. P. Poornendu Thejaswini %J Journal of Polymers %D 2013 %R 10.1155/2013/424015 %X A preliminary investigation of interrelationships between tensile stress-strain characteristics and morphology evolution during deformation is conducted on a commercially available thermoplastic composite with a low-surface-energy nanofibrillating poly(tetrafluoroethylene) (PTFE) additive. In this class of composites, the deformation-associated nanofibrillation of the low-surface-energy additive has been hypothesized to provide an additional dissipation mechanism, thereby enhancing the ductility of the composite. This class of composites offers potential for automotive light weighting in exterior and interior body and fascia applications; it is therefore of interest to investigate processing-structure-property interrelationships in these materials. This study specifically probes the interrelationships between the plastic deformation within the matrix and the fibrillation of the low-surface-energy additive; tensile tests are carried out at two different temperatures which are chosen so as to facilitate and suppress plastic deformation within the matrix polymer. Based on these preliminary investigations, it is noted that PTFE fibrillation acts synergistically with the ductile deformation of the matrix resin resulting in higher strains to failure of the composite; the results also suggest that the mechanism of fibrillation-assisted enhancement of strains to failure may not operate in the absence of matrix plasticity. 1. Introduction Thermoplastic matrix composites comprise an attractive class of materials holding high potential for light-weighting applications; these composites are typically designed to combine the ductility, toughness, and processability of thermoplastic matrices, and the stiffness, strength, thermo-mechanical, and other special functionalities of an additive material. Typical reinforcements that are added to polymeric matrices to enhance the thermo mechanical properties¡ªfor example, stiffness, strength, and heat-deflection temperature¡ªinclude fibrous fillers (such as glass and carbon fibers), flakes and discs (such as talc), and nanofillers (such as nanoclay platelets). Typically, the addition of a stiffening reinforcement also leads to a compromise of the ductility of the composite; the resulting composite is rendered more brittle (with a lower strain to failure) compared to the unreinforced matrix. The loss of ductility relative to the unfilled polymer may be attributed to the rigid filler hindering certain degrees of freedom of the polymer to reconfigure its state upon being stressed. While structural members fabricated from %U http://www.hindawi.com/journals/jpol/2013/424015/