%0 Journal Article %T Ufasomes Mediated Cutaneous Delivery of Dexamethasone: Formulation and Evaluation of Anti-Inflammatory Activity by Carrageenin-Induced Rat Paw Edema Model %A Rajkamal Mittal %A Arvind Sharma %A Sandeep Arora %J Journal of Pharmaceutics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/680580 %X The purpose of study is to formulate and evaluate ufasomal gel of dexamethasone. Ufasomal suspension was made by sonication method using different concentrations of Span 80, Span 20 and cholesterol along with 25 mg of drug. Ufasomal gel was formulated by hydration method using carbopol 940. Ufasomal vesicles appeared as spherical and multilamellar under Transmission Electron Microscope. Ufasomal formulation prepared with drug to oleic acid molar ratio 8:2 (UF-2) produced greater number of vesicles and greater entrapment efficiency. UF-2 was optimized for further evaluation. The transdermal permeation and skin partitioning of from optimized formulation was significantly higher ( ) as compared to plain drug and plain gel formulation which is due to presence of surfactant acting as permeation enhancer. Permeation of optimized formulation was found to be about 4.7 times higher than plain drug gel. Anti-inflammatory activity evaluated by inhibition Carrageenan induced rat paw edema model. Significant reduction of edema ( ) was observed in comparison to the commercial product. Hence oleic acid based vesicles can be used as alternate carrier for topical delivery. 1. Introduction Dexamethasone is a glucocorticoid with a relevant clinical use mainly due to its anti-inflammatory and immunosuppressive effects. However, the great number of side effects, such as hypertension, hydroelectrolytic disorders, hyperglycemia, peptic ulcers, and glucosuria, restricts the use of dexamethasone in prolonged therapy [1]. Topical administration of dexamethasone is clinically used for the treatment of many ocular disorders, or diseases, like uveitis, [2] allergic conjunctivitis, [3] and corneal postoperative period, [4] as well as for the treatment of skin disorders such as atopic dermatitis, [5, 6] allergic dermatitis, eczematous dermatitis, [6, 7] psoriasis, acne rosacea, [8] and phimosis [9]. Over the last years many efforts have been made not only to improve the efficacy and bioavailability of drugs but also to reduce their adverse effects by means of the development of novel drug carrier systems [10]. In the past few decades, considerable attention has been focused on the development of new drug delivery system (NDDS). When the new drug or existing drug is given by altering the formulation and administered through different route, this process is called the novel drug delivery system. The NDDS should ideally fulfill two prerequisites. Firstly, it should deliver the drug at a rate directed by the needs of the body, over the period of treatment. Secondly, it should channel the %U http://www.hindawi.com/journals/jphar/2013/680580/