%0 Journal Article %T CFD Method for Predicting Annular Pressure Losses and Cuttings Concentration in Eccentric Horizontal Wells %A Titus N. Ofei %A Sonny Irawan %A William Pao %J Journal of Petroleum Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/486423 %X In oil and gas drilling operations, predictions of pressure losses and cuttings concentration in the annulus are very complex due to the combination of interacting drilling parameters. Past studies have proposed many empirical correlations to estimate pressure losses and cuttings concentration. However, these developed correlations are limited to their experimental data range and setup, and hence, they cannot be applicable to all cases. CFD methods have the advantages of handling complex multiphase flow problems, as well as, an unlimited number of physical and operational conditions. The present study employs the inhomogeneous (Eulerian-Eulerian) model to simulate a two-phase solid-fluid flow and predict pressure losses and cuttings concentration in eccentric horizontal annuli as a function of varying drilling parameters: fluid velocity, diameter ratio (ratio of inner pipe diameter to outer pipe diameter), inner pipe rotation speed, and fluid type. Experimental data for pressure losses and cuttings concentration from previous literature compared very well with simulation data, confirming the validity of the current model. The study shows how reliable CFD methods can replicate the actual, yet complex oil and gas drilling operations. 1. Introduction Predictions of pressure losses and cuttings concentration in annular wells are strongly affected by varying drilling parameters such as fluid velocity, fluid properties (density, viscosity), cuttings size and density, hole-pipe eccentricity, drill pipe rotation, and annular diameter ratios. There are few attempts made by some investigators to estimate pressure losses and cuttings concentration in annular geometries with and without drill pipe rotation by employing either experimental or numerical approaches. Among the first authors to conduct extensive experimental study on cuttings transport at varying angles of inclinations is Tomren et al. [1]. The authors studied the effects of fluid velocity, fluid rheological properties, pipe-hole eccentricity, drill pipe rotation, and flow regimes on cuttings concentration at steady state condition. They concluded that fluid velocity, hole inclination, and mud rheological properties were the major factors affecting mud carrying capacity. Becker and Azar [2] also investigated experimentally the effects of mud weight and annular diameter ratio on the performance of hole cleaning in inclined wellbores. The authors observed that variations in the drill pipe have minimum effect on particle concentration for the same fluid velocity. According to Adari et al. [3], the %U http://www.hindawi.com/journals/jpe/2014/486423/