%0 Journal Article %T Suzuki-Type Generalization of Chatterjea Contraction Mappings on Complete Partial Metric Spaces %A Mohammad Imdad %A Ali Erduran %J Journal of Operators %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/923843 %X Motivated by Suzuki (2008), we prove a Suzuki-type fixed point theorem employing Chatterjea contraction on partial metric spaces. 1. Introduction and Preliminaries Historically, the idea of a complete metric space has interesting and important applications in classical analysis especially in existence and uniqueness theories on one hand while on the other hand Banach fixed point theorem [1] is one of the most useful results in nonlinear analysis. In the recent past, many authors considered the equivalence of existence results on fixed points (of mappings) by proving suitable equivalence theorems ascertaining the completeness of the underlying metric space. Kirk [2] proved that a metric space is complete if and only if every Caristi type mapping has a unique fixed point. Similarly, Subrahmanyam [3] showed that a metric space is complete if and only if every Kannan mapping has a unique fixed point. However, Banach contraction condition does not characterize the metric completeness of the underlying space. Indeed, Connell [4] gave an example of an incomplete metric space on which every contraction map has a fixed point. Despite this fact, Suzuki obtained Banach contraction principle that characterizes the metric completeness of the space using a different type of contraction. Thereafter, many authors proved different generalizations by proving different types of fixed point theorems in complete metric space, for example, Suzuki [5] proved Kannan version of a Suzuki-type generalized result wherein authors discussed contraction mappings and Kannan mappings from a different point of view while Popescu [6] attempted Chatterjea version on complete metric space. In this continuation, Altun and Erduran proved a Suzuki-type fixed point theorem using an implicit function on complete metric space [7] wherein authors obtained unified and generalized results of Suzuki-type. Finally, Kikkawa and Suzuki proved multivalued version of Suzuki-type results which generalize classical results of Markin [8] and Nadler [9]. For further details on this theme, one can be referred to [7, 10¨C15]. Evidently, contractions are always continuous, but Kannan mappings are not necessarily continuous. Also, one may notice that a contraction mapping is not necessarily Kannan mapping, and a Kannan mapping is not essentially a contraction mapping so that both conditions are not essentially comparable but Kannan contractions are relatively stronger than Banach contraction in certain sense. However, Chatterjea contraction is obtained by interchanging the roles of variables , in Kannan %U http://www.hindawi.com/journals/joper/2013/923843/